
z/OS Communications Server

IP CICS Sockets Guide
Version 1 Release 4

SC31-8807-01

���

z/OS Communications Server

IP CICS Sockets Guide
Version 1 Release 4

SC31-8807-01

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 343.

Second edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xiii

About this document . xv
Who should use this document xv
Where to find more information xv

Where to find related information on the Internet xv
Licensed documents . xvi
Using LookAt to look up message explanations. xvii
How to contact IBM® service xvii
z/OS Communications Server information xviii

Summary of changes . xxvii

Chapter 1. Introduction to CICS TCP/IP 1
TCP/IP internets . 2

Telnet . 2
Client/server processing . 2
TCP, UDP, and IP . 2
The socket API . 3
Programming with sockets . 4
A typical client server program flow chart 6
The basic socket calls. 8
Server TCP/IP calls. 9
Client TCP/IP calls . 11
Other socket calls . 12

What you must have to run CICS TCP/IP 16
CICS TCP/IP components . 17
A summary of what CICS TCP/IP provides. 17

The socket calls . 17
The Listener . 18
Conversion routines . 18

Chapter 2. Setting up and configuring CICS TCP/IP 19
MVS JCL — Modifying CICS startup 19
CICS — Defining CICS TCP/IP resources 20

Transaction definitions . 21
Program definitions . 23
File definitions . 32
Transient data definition . 36
CICS monitoring . 36
CICS program list table (PLT) 40
System recovery table . 40

TCP/IP services — Modifying data sets 42
The hlq.PROFILE.TCPIP data set 42
The hlq.TCPIP.DATA data set 43

Configuring the CICS TCP/IP environment 44
Building the configuration data set with EZACICD 44
Customizing the configuration data set 53

UNIX Systems Services environment affects on IP CICS sockets 71

Chapter 3. Configuring the CICS Domain Name System cache 73

© Copyright IBM Corp. 1994, 2002 iii

Function components . 73
VSAM cache file . 73
EZACICR macro . 73
EZACIC25 module . 74

How the DNS cache handles requests 74
Using the DNS cache . 75

Step 1: Create the initialization module 75
Step 2: Define the cache file to CICS 78
Step 3: Execute EZACIC25 79

Chapter 4. Starting and stopping CICS sockets 81
Starting/stopping CICS TCP/IP automatically 81
Starting/stopping CICS TCP/IP manually 81

START function. 82
STOP function . 84

Starting/stopping CICS TCP/IP with program link 87

Chapter 5. Writing your own Listener 89
Prerequisites. 89
Using IBM’s environmental support 89
WLM registration and deregistration for sysplex connection optimization 91

Chapter 6. Application programming guide 93
Writing CICS TCP/IP applications 93

1. The client-Listener-child-server application set 94
2. Writing your own concurrent server 96
3. The iterative server CICS TCP/IP application 98
4. The client CICS TCP/IP application 98

Socket addresses . 99
Address family (domain) . 99
IP addresses . 100
Ports . 100
Address structures . 100

MVS address spaces . 100
Network byte order . 101

GETCLIENTID, GIVESOCKET, and TAKESOCKET 102
The Listener . 103

Listener input format . 104
Listener output format . 105
Writing your own security/transaction link module for the Listener 107

Data conversion routines . 109

Chapter 7. C language application programming 111
C socket library . 111
C socket compilation . 111
Structures used in socket calls. 114
The ERRNO variable . 115
C socket calls . 115

accept() . 115
bind() . 117
close() . 118
connect(). 118
fcntl() . 120
getclientid() . 121
gethostbyaddr() . 121
gethostbyname() . 122

iv z/OS V1R4.0 CS: IP CICS Sockets Guide

gethostid() . 122
gethostname(). 123
getpeername() . 123
getsockname() . 124
getsockopt(), setsockopt() 125
givesocket() . 128
initapi() . 129
ioctl() . 129
listen() . 131
read() . 132
recv() . 133
recvfrom() . 134
select() . 135
send(). 137
sendto() . 138
setsockopt() . 139
shutdown() . 139
socket() . 140
takesocket() . 141
write() . 142

Chapter 8. Sockets extended application programming interface (API) 143
Environmental restrictions and programming requirements 143
CALL instruction application programming interface (API) 143
Understanding COBOL, assembler, and PL/1 call formats. 144

COBOL language call format 144
Assembler language call format 144
PL/1 language call format 145

Converting parameter descriptions 145
Error messages and return codes 146
Code CALL instructions . 146

ACCEPT. 147
BIND . 148
CLOSE . 150
CONNECT . 151
FCNTL . 154
GETCLIENTID . 155
GETHOSTBYADDR . 157
GETHOSTBYNAME . 159
GETHOSTID . 161
GETHOSTNAME . 162
GETPEERNAME. 163
GETSOCKNAME . 164
GETSOCKOPT . 166
GIVESOCKET . 173
INITAPI and INITAPIX . 175
IOCTL . 177
LISTEN . 181
READ. 182
READV . 183
RECV. 186
RECVFROM . 188
RECVMSG . 190
SELECT . 193
SELECTEX. 197
SEND. 200

Contents v

||

SENDMSG . 202
SENDTO . 205
SETSOCKOPT . 207
SHUTDOWN . 214
SOCKET . 216
TAKESOCKET . 218
TERMAPI . 220
WRITE . 221
WRITEV . 222

Using data translation programs for socket call interface 224
Data translation . 224
Bit string processing . 224

Appendix A. Original COBOL application programming interface
(EZACICAL) . 233

Using the EZACICAL or Sockets Extended API 233
COBOL compilation. 233
The EZACICAL API. 235

COBOL . 235
PL/I . 235
Assembler language . 236

COBOL and assembler language socket calls 236
ACCEPT. 236
BIND . 237
CLOSE . 238
CONNECT . 239
FCNTL . 240
GETCLIENTID . 241
GETHOSTID . 242
GETHOSTNAME . 242
GETPEERNAME. 243
GETSOCKNAME . 244
GETSOCKOPT . 245
GIVESOCKET . 246
INITAPI . 247
IOCTL . 248
LISTEN . 249
READ. 249
RECVFROM . 250
SELECT . 251
SEND. 253
SENDTO . 254
SETSOCKOPT . 255
SHUTDOWN . 257
SOCKET . 257
TAKESOCKET . 258
WRITE . 259

Appendix B. Return codes 261
Sockets Return Codes (ERRNOs) 261
Sockets Extended ERRNOs 271

Appendix C. GETSOCKOPT/SETSOCKOPT command values 275

Appendix D. CICS sockets messages 277
EZY1218—EZY1348 . 277

vi z/OS V1R4.0 CS: IP CICS Sockets Guide

||

||

Appendix E. Sample programs 305
EZACICSC . 305
EZACICSS . 312

Appendix F. Related protocol specifications (RFCs). 329

Appendix G. Information APARs 337
Information APARs for IP manuals 337
Information APARs for SNA manuals 338
Other information APARs. 338

Appendix H. Accessibility . 341
Using assistive technologies 341
Keyboard navigation of the user interface. 341

Notices . 343
Trademarks. 346

Index . 349

Communicating Your Comments to IBM 357

Contents vii

||

viii z/OS V1R4.0 CS: IP CICS Sockets Guide

Figures

1. The use of CICS sockets . 1
2. TCP/IP protocols compared to the OSI model and SNA 3
3. A typical client server session . 7
4. An iterative server . 8
5. A concurrent server . 8
6. The SELECT call . 13
7. How user applications access TCP/IP networks with CICS TCP/IP (run-time environment) 18
8. JCL for CICS startup with the TCP/IP socket interface 20
9. EZAC, transaction to configure the socket interface, definition in RDO 21

10. EZAO, transaction to enable the socket interface, definition in RDO 22
11. EZAP, transaction to disable the socket interface 22
12. CSKL, Listener task transaction, definition in RDO 23
13. EZACIC00, connection manager program, definition in RDO 25
14. EZACIC01, task related user exit program, definition in RDO 25
15. EZACIC02, Listener program, definition in RDO 26
16. EZACIC20, front-end module for CICS sockets, definition in RDO 26
17. EZACIC12, WLM registration and deregistration module for CICS sockets 27
18. EZACIC21, initialization module for CICS sockets, definition in RDO 27
19. EZACIC22, termination module for CICS sockets, definition in RDO 28
20. EZACIC23, primary module for transaction EZAC, definition in RDO 28
21. EZACIC24, message delivery module for CICS sockets, definition in RDO. 29
22. EZACIC25, domain name server cache module, definition in RDO 29
23. EZACICME, U.S. English text delivery module, definition in RDO 30
24. EZACICM, maps used by the EZAO transaction, definition in RDO 30
25. EZACICSS, sample iterative server program, definition in RDO 31
26. EZACICSC, sample child server program, definition in RDO 31
27. EZACONFG, defining to RDO . 33
28. EZACACHE, defining to RDO . 35
29. Addition to the DCT required by CICS TCP/IP . 36
30. The Monitor Control Table (MCT) for TRUE . 37
31. The Monitor Control Table (MCT) for Listener . 39
32. Definition of the hlq.TCP/IP profile . 43
33. The TCPIPJOBNAME parameter in the hlq.TCPIP.DATA data set 43
34. Example of JCL to define a configuration file . 51
35. EZAC initial screen . 54
36. EZAC,ALTER screen . 55
37. EZAC,ALTER,CICS screen . 55
38. EZAC,ALTER,CICS detail screen . 56
39. ALTER,LISTENER screen . 56
40. EZAC,ALTER,LISTENER detail screen - Standard version 57
41. EZAC,ALTER,LISTENER detail screen - Enhanced version 57
42. EZAC,CONVERT,LISTENER screen. 58
43. EZAC,CONVERT,LISTENER detail screen - Standard version 58
44. EZAC,CONVERT,LISTENER detail screen - Enhanced version 59
45. EZAC,COPY screen . 60
46. EZAC,COPY,CICS screen . 60
47. EZAC,COPY,LISTENER screen . 61
48. EZAC,DEFINE screen . 62
49. EZAC,DEFINE,CICS screen. 62
50. EZAC,DEFINE,CICS detail screen . 63
51. EZAC,DEFINE,LISTENER screen . 63
52. EZAC,DEFINE,LISTENER detail screen - Standard version 64
53. EZAC,DEFINE,LISTENER detail screen - Enhanced version 64

© Copyright IBM Corp. 1994, 2002 ix

54. EZAC,DELETE screen. 65
55. EZAC,DELETE,CICS screen . 65
56. EZAC,DELETE,LISTENER screen . 66
57. EZAC,DISPLAY screen . 67
58. EZAC,DISPLAY,CICS screen . 67
59. EZAC,DISPLAY,CICS detail screen . 68
60. EZAC,DISPLAY,LISTENER screen . 68
61. EZAC,DISPLAY,LISTENER detail screen - Standard version 69
62. EZAC,DISPLAY,LISTENER detail screen - Enhanced version 69
63. EZAC,RENAME screen . 70
64. EZAC,RENAME,CICS screen . 70
65. EZAC,RENAME,LISTENER screen . 71
66. Example of defining and initializing a DNS cache file 77
67. The DNS HOSTENT . 80
68. EZAO initial screen . 82
69. EZAO START screen . 83
70. EZAO START CICS response screen . 83
71. EZAO START LISTENER screen . 84
72. EZAO START LISTENER result screen . 84
73. EZAO STOP screen . 85
74. EZAO STOP CICS screen . 85
75. EZAO STOP LISTENER screen . 86
76. The sequence of sockets calls . 95
77. Sequence of socket calls with an iterative server 98
78. Sequence of socket calls between a CICS client and a remote iterative server 99
79. MVS address spaces . 101
80. Transfer of CLIENTID information . 102
81. Modified JCL for C socket compilation . 113
82. Storage definition statement examples . 146
83. ACCEPT call instructions example . 147
84. BIND call instruction example. 149
85. CLOSE call instruction example . 151
86. CONNECT call instruction example . 153
87. FCNTL call instruction example . 154
88. GETCLIENTID call instruction example . 156
89. GETHOSTBYADDR call instruction example . 157
90. HOSTENT structure returned by the GETHOSTBYADDR call 158
91. GETHOSTBYNAME call instruction example . 159
92. HOSTENT structure returned by the GETHOSTYBYNAME call 160
93. GETHOSTID call instruction example . 161
94. GETHOSTNAME call instruction example . 162
95. GETPEERNAME call instruction example . 163
96. GETSOCKNAME call instruction example . 165
97. GETSOCKOPT call instruction example . 166
98. GIVESOCKET call instruction example . 174
99. INITAPI call instruction example . 176

100. IOCTL call instruction example . 178
101. Interface request structure (IFREQ) for the IOCTL call 179
102. COBOL II example for SIOCGIFCONF . 180
103. LISTEN call instruction example . 181
104. READ call instruction example . 183
105. READV call instruction example . 184
106. RECV call instruction example . 186
107. RECVFROM call instruction example . 188
108. RECVMSG call instruction example . 191
109. SELECT call instruction example . 195

x z/OS V1R4.0 CS: IP CICS Sockets Guide

||

110. SELECTEX call instruction example . 198
111. SEND call instruction example . 201
112. SENDMSG call instruction example . 203
113. SENDTO call instruction example . 206
114. SETSOCKOPT call instruction example . 208
115. SHUTDOWN call instruction example . 216
116. SOCKET call instruction example . 217
117. TAKESOCKET call instruction example . 219
118. TERMAPI call instruction example . 220
119. WRITE call instruction example . 221
120. WRITEV call instruction example . 223
121. EZACIC04 call instruction example. 225
122. EZACIC05 call instruction example. 226
123. EZACIC06 call instruction example. 227
124. EZAZIC08 call instruction example . 230
125. Modified JCL for COBOL compilation . 234

Figures xi

||

xii z/OS V1R4.0 CS: IP CICS Sockets Guide

Tables

1. First fullword passed in a bit string in select . 14
2. Second fullword passed in a bit string in select . 14
3. Conditions for translation of tranid and user data 49
4. Calls for the client application . 95
5. Calls for the server application . 96
6. Calls for the concurrent server application . 96
7. CLIENTID structures . 101
8. Listener output format - Standard Listener . 105
9. Listener output format - Enhanced Listener. 106

10. Security/transaction exit data . 107
11. C structures . 114
12. OPTNAME options for GETSOCKOPT . 167
13. IOCTL call arguments . 179
14. OPTNAME options for SETSOCKOPT . 209
15. Effect of SHUTDOWN socket call . 215
16. Sockets ERRNOs . 261
17. Sockets Extended ERRNOs . 271
18. GETSOCKOPT/SETSOCKOPT command values 275
19. IP information APARs. 337
20. SNA information APARs . 338
21. Non-document information APARs . 339

© Copyright IBM Corp. 1994, 2002 xiii

||

||

||

xiv z/OS V1R4.0 CS: IP CICS Sockets Guide

About this document

This document contains a description of the TCP/IP Socket Interface for CICS®

(referred to as CICS TCP/IP for short). It contains an introduction, a guide to
initialization, and a guide and reference to writing application programs. Use this
document to set up CICS TCP/IP, write application programs, and diagnose
problems.

This document supports z/OS.e.

Who should use this document
This document is intended for both system programmers and application
programmers who perform any of the following tasks with CICS TCP/IP:

v Setting up CICS TCP/IP

v Writing application programs

v Diagnosing problems

The document assumes that the reader is familiar with the MVS™ operating system,
and the C or COBOL programming languages. Since the CICS transaction
processing system is a prerequisite for CICS TCP/IP, the document assumes the
reader is also familiar with CICS.

Where to find more information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the documents in the z/OS™ Communications
Server (z/OS CS) library, along with related publications

Where to find related information on the Internet
z/OS

– http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

– http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

– http://www.software.ibm.com/network/commserver/

IBM Communications Server support

– http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

– http://www.redbooks.ibm.com/

IBM Systems Center flashes

– http://www-1.ibm.com/support/techdocs/atsmastr.nsf

IBM

– http://www.ibm.com

RFCs

© Copyright IBM Corp. 1994, 2002 xv

|
|
|
|
|

|

|
|

|

|

|

|
|
|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com

– http://www.ietf.org/rfc.html

Information about Web addresses can also be found in information APAR II11334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed documents
z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
http://www.ibm.com/servers/resourcelink. Licensed documents are available only to
customers with a z/OS Communications Server license. Access to these documents
requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
http://www.ibm.com/servers/resourcelink. To register for access to the z/OS licensed
documents perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed documents unless you have registered for
access to them and received an e-mail confirmation informing you that your request
has been processed. To access the licensed documents perform the following
steps:

xvi z/OS V1R4.0 CS: IP CICS Sockets Guide

|

|
|

|
|

|

|

|

|

|
|

|

|

|
|

http://www.rfc-editor.org/rfc.html
http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS Communications Server.

6. Access the licensed document by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

How to contact IBM® service

For immediate assistance, visit this Web site:
http://www.software.ibm.com/network/commserver/support/

About this document xvii

|
|

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating Your
Comments to IBM” on page 357.

z/OS Communications Server information
This section contains descriptions of the documents in the z/OS Communications
Server library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

v In hardcopy and softcopy

v In softcopy only

Softcopy information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

z/OS V1R4 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication
IBM S/390 Redbooks
Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server library
The following abbreviations follow each order number in the tables below.

HC/SC — Both hardcopy and softcopy are available.

SC — Only softcopy is available. These documents are available on the CD Rom
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

xviii z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|

|
|
|
|

|
|

|
|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Updates to documents are available on RETAIN and in information APARs (info
APARs). See Appendix G, “Information APARs” on page 337 for a list of the
documents and the info APARs associated with them.

v Info APARs for OS/390 documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

v Info APARs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Planning and migration:

Title Number Format Description

z/OS Communications
Server: SNA Migration

GC31-8774 HC/SC This document is intended to help you plan for
SNA, whether you are migrating from a previous
version or installing SNA for the first time. This
document also identifies the optional and required
modifications needed to enable you to use the
enhanced functions provided with SNA.

z/OS Communications
Server: IP Migration

GC31-8773 HC/SC This document is intended to help you plan for
TCP/IP Services, whether you are migrating from
a previous version or installing IP for the first
time. This document also identifies the optional
and required modifications needed to enable you
to use the enhanced functions provided with
TCP/IP Services.

z/OS Communications
Server: IPv6 Network
and Application Design
Guide

SC31-8885 HC/SC This document is a high-level introduction to IPv6.
It describes concepts of z/OS Communications
Server’s support of IPv6, coexistence with IPv4,
and migration issues.

Resource definition, configuration, and tuning:

Title Number Format Description

z/OS Communications
Server: IP Configuration
Guide

SC31-8775 HC/SC This document describes the major concepts
involved in understanding and configuring an IP
network. Familiarity with the z/OS operating
system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document in conjunction
with the z/OS Communications Server: IP
Configuration Reference.

z/OS Communications
Server: IP Configuration
Reference

SC31-8776 HC/SC This document presents information for people
who want to administer and maintain IP. Use this
document in conjunction with the z/OS
Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

About this document xix

|
|
|

|
|
|
|

|
|
|
|

|

|||||

|
|
|||
|
|
|
|
|

|
|
|||
|
|
|
|
|
|

|
|
|
|

|||
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Format Description

z/OS Communications
Server: SNA Network
Implementation Guide

SC31-8777 HC/SC This document presents the major concepts
involved in implementing an SNA network. Use
this document in conjunction with the z/OS
Communications Server: SNA Resource Definition
Reference.

z/OS Communications
Server: SNA Resource
Definition Reference

SC31-8778 HC/SC This document describes each SNA definition
statement, start option, and macroinstruction for
user tables. It also describes NCP definition
statements that affect SNA. Use this document in
conjunction with the z/OS Communications
Server: SNA Network Implementation Guide.

z/OS Communications
Server: SNA Resource
Definition Samples

SC31-8836 SC This document contains sample definitions to help
you implement SNA functions in your networks,
and includes sample major node definitions.

z/OS Communications
Server: AnyNet SNA
over TCP/IP

SC31-8832 SC This guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

z/OS Communications
Server: AnyNet Sockets
over SNA

SC31-8831 SC This guide provides information to help you install,
configure, use, and diagnose sockets over SNA. It
also provides information to help you prepare
application programs to use sockets over SNA.

z/OS Communications
Server: IP Network Print
Facility

SC31-8833 SC This document is for system programmers and
network administrators who need to prepare their
network to route SNA, JES2, or JES3 printer
output to remote printers using TCP/IP Services.

Operation:

Title Number Format Description

z/OS Communications
Server: IP User’s Guide
and Commands

SC31-8780 HC/SC This document describes how to use TCP/IP
applications. It contains requests that allow a user
to log on to a remote host using Telnet, transfer
data sets using FTP, send and receive electronic
mail, print on remote printers, and authenticate
network users.

z/OS Communications
Server: IP System
Administrator’s
Commands

SC31-8781 HC/SC This document describes the functions and
commands helpful in configuring or monitoring
your system. It contains system administrator’s
commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also
includes TSO and MVS commands commonly
used during the IP configuration process.

z/OS Communications
Server: SNA Operation

SC31-8779 HC/SC This document serves as a reference for
programmers and operators requiring detailed
information about specific operator commands.

z/OS Communications
Server: Quick Reference

SX75-0124 HC/SC This document contains essential information
about SNA and IP commands.

Customization:

xx z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|

|||
|
|
|
|
|
|

Title Number Format Description

z/OS Communications
Server: SNA
Customization

LY43-0092 SC This document enables you to customize SNA,
and includes the following:

v Communication network management (CNM)
routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for
the CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs:

Title Number Format Description

z/OS Communications
Server: IP Application
Programming Interface
Guide

SC31-8788 SC This document describes the syntax and
semantics of program source code necessary to
write your own application programming interface
(API) into TCP/IP. You can use this interface as
the communication base for writing your own
client or server application. You can also use this
document to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

z/OS Communications
Server: IP CICS Sockets
Guide

SC31-8807 SC This document is for programmers who want to
set up, write application programs for, and
diagnose problems with the socket interface for
CICS using z/OS TCP/IP.

z/OS Communications
Server: IP IMS Sockets
Guide

SC31-8830 SC This document is for programmers who want
application programs that use the IMS TCP/IP
application development services provided by
IBM’s TCP/IP Services.

z/OS Communications
Server: IP Programmer’s
Reference

SC31-8787 SC This document describes the syntax and
semantics of a set of high-level application
functions that you can use to program your own
applications in a TCP/IP environment. These
functions provide support for application facilities,
such as user authentication, distributed
databases, distributed processing, network
management, and device sharing. Familiarity with
the z/OS operating system, TCP/IP protocols, and
IBM Time Sharing Option (TSO) is recommended.

z/OS Communications
Server: SNA
Programming

SC31-8829 SC This document describes how to use SNA
macroinstructions to send data to and receive
data from (1) a terminal in either the same or a
different domain, or (2) another application
program in either the same or a different domain.

z/OS Communications
Server: SNA
Programmer’s LU 6.2
Guide

SC31-8811 SC This document describes how to use the SNA LU
6.2 application programming interface for host
application programs. This document applies to
programs that use only LU 6.2 sessions or that
use LU 6.2 sessions along with other session
types. (Only LU 6.2 sessions are covered in this
document.)

About this document xxi

Title Number Format Description

z/OS Communications
Server: SNA
Programmer’s LU 6.2
Reference

SC31-8810 SC This document provides reference material for the
SNA LU 6.2 programming interface for host
application programs.

z/OS Communications
Server: CSM Guide

SC31-8808 SC This document describes how applications use
the communications storage manager.

z/OS Communications
Server: CMIP Services
and Topology Agent
Guide

SC31-8828 SC This document describes the Common
Management Information Protocol (CMIP)
programming interface for application
programmers to use in coding CMIP application
programs. The document provides guide and
reference information about CMIP services and
the SNA topology agent.

Diagnosis:

Title Number Format Description

z/OS Communications
Server: IP Diagnosis

GC31-8782 HC/SC This document explains how to diagnose TCP/IP
problems and how to determine whether a
specific problem is in the TCP/IP product code. It
explains how to gather information for and
describe problems to the IBM Software Support
Center.

z/OS Communications
Server: SNA Diagnosis
Vol 1, Techniques and
Procedures and z/OS
Communications Server:
SNA Diagnosis Vol 2,
FFST Dumps and the
VIT

LY43-0088

LY43-0089

HC/SC These documents help you identify an SNA
problem, classify it, and collect information about
it before you call the IBM Support Center. The
information collected includes traces, dumps, and
other problem documentation.

z/OS Communications
Server: SNA Data Areas
Volume 1 and z/OS
Communications Server:
SNA Data Areas Volume
2

LY43-0090

LY43-0091

SC These documents describe SNA data areas and
can be used to read an SNA dump. They are
intended for IBM programming service
representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes:

Title Number Format Description

z/OS Communications
Server: SNA Messages

SC31-8790 HC/SC This document describes the ELM, IKT, IST, ISU,
IUT, IVT, and USS messages. Other information
in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications
Server: IP Messages
Volume 1 (EZA)

SC31-8783 HC/SC This volume contains TCP/IP messages
beginning with EZA.

xxii z/OS V1R4.0 CS: IP CICS Sockets Guide

Title Number Format Description

z/OS Communications
Server: IP Messages
Volume 2 (EZB)

SC31-8784 HC/SC This volume contains TCP/IP messages
beginning with EZB.

z/OS Communications
Server: IP Messages
Volume 3 (EZY)

SC31-8785 HC/SC This volume contains TCP/IP messages
beginning with EZY.

z/OS Communications
Server: IP Messages
Volume 4 (EZZ-SNM)

SC31-8786 HC/SC This volume contains TCP/IP messages
beginning with EZZ and SNM.

z/OS Communications
Server: IP and SNA
Codes

SC31-8791 HC/SC This document describes codes and other
information that appear in z/OS Communications
Server messages.

APPC Application Suite:

Title Number Format Description

z/OS Communications
Server: APPC
Application Suite User’s
Guide

SC31-8809 SC This documents the end-user interface (concepts,
commands, and messages) for the AFTP,
ANAME, and APING facilities of the APPC
application suite. Although its primary audience is
the end user, administrators and application
programmers may also find it useful.

z/OS Communications
Server: APPC
Application Suite
Administration

SC31-8835 SC This document contains the information that
administrators need to configure the APPC
application suite and to manage the APING,
ANAME, AFTP, and A3270 servers.

z/OS Communications
Server: APPC
Application Suite
Programming

SC31-8834 SC This document provides the information
application programmers need to add the
functions of the AFTP and ANAME APIs to their
application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communications Server for OS/390 V2R7 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

About this document xxiii

Title Number

Migrating Subarea Networks to an IP Infrastructure SG24–5957

Related information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents.

The table below lists documents that may be helpful to readers.

Title Number

z/OS Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS Security Server LDAP Client Programming SC24-5924

z/OS Security Server LDAP Server Administration and Use SC24-5923

Understanding LDAP SG24-4986

z/OS UNIX System Services Programming: Assembler Callable
Services Reference

SA22-7803

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services User’s Guide SA22-7801

z/OS UNIX System Services Planning GA22-7800

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS C/C++ Run-Time Library Reference SA22-7821

z/OS Program Directory GI10-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR,
1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and
Associates, 1997

ISBN 156592–222–0

TCP/IP Tutorial and Technical Overview GG24-3376

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens,
Addison-Wesley Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright
and W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens,
Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

z/OS System Secure Sockets Layer Programming SC24-5901

xxiv z/OS V1R4.0 CS: IP CICS Sockets Guide

||

|
|
|
|

|

|

|||

||

||

||

||

||

||

||

||

||

|
|
|

||

||

||

||

||

||

||

|
|
|

|
|
|

||

|
|
|

|
|
|

|
|
|

||

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

v At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

About this document xxv

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

xxvi z/OS V1R4.0 CS: IP CICS Sockets Guide

Summary of changes

Summary of changes
for SC31-8807-01
z/OS Version 1 Release 4

This document contains information previously presented in SC31-8807-00, which
supports z/OS Version 1 Release 2.

New information

v Call instructions GETSOCKOPT and SETSOCKOPT have been updated. For
details, see “GETSOCKOPT” on page 165 and “SETSOCKOPT” on page 207.

v Call instruction INITAPI has been updated to include INITAPIX. For details, see
“INITAPI and INITAPIX” on page 175.

v CICS sockets message EZY1348E has been added. For details, see Appendix D,
“CICS sockets messages” on page 277.

An appendix with z/OS product accessibility information has been added.

Changed information

v The modifications required in the CICS startup job have been updated. For
details, see Figure 8 on page 20.

v The Monitor Control Table for TRUE has been updated. For details, see
Figure 30 on page 37.

v The Monitor Control Table for Listener has been updated. For details, see
Figure 31 on page 39.

v The call instruction examples have changed for the following call instructions. For
details, see their specific sections in “Code CALL instructions” on page 146.

– IOCTL

– RECV

– RECVFROM

– RECVMSG

– SEND

– SENDMSG

– SENDTO

– SHUTDOWN

– SOCKET

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document–for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

© Copyright IBM Corp. 1994, 2002 xxvii

Summary of changes
for SC31-8807-00
z/OS Version 1 Release 2

This document contains information previously presented in OS/390 V2R8
SecureWay Communications Server: IP CICS Sockets Guide.

New information

v The CICS sockets interface has been updated to allow configuration of an
enhanced version of the CICS Listener, as well as the standard version
previously supplied. For details, see Chapter 2, “Setting up and configuring CICS
TCP/IP” on page 19.

v The TCP_NODELAY option is now available to disable the Nagle algorithm to
improve response time. For details, see “getsockopt(), setsockopt()” on page 125,
“GETSOCKOPT” on page 165, and “SETSOCKOPT” on page 207.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

xxviii z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 1. Introduction to CICS TCP/IP

The IP CICS socket API and the IBM supplied Listener is IPv4 enabled.

CICS is an online transaction processing system. This means that application
programs using CICS can handle large numbers of data transactions from large
networks of computers and terminals.

Communication throughout these networks has often been based on the Systems
Network Architecture (SNA) family of protocols. CICS TCP/IP offers CICS users an
alternative to SNA, the TCP/IP family of protocols for those users whose native
communications protocol is TCP/IP.

CICS TCP/IP allows remote users to access CICS client/server applications over
TCP/IP internets. Figure 1 shows how these two products give remote users
peer-to-peer communication with CICS applications.

It is important to understand that CICS TCP/IP is primarily intended to support
peer-to-peer applications, as opposed to the traditional CICS mainframe interactive
applications in which the CICS system contained all program logic and the remote
terminal was often referred to as a “dumb” terminal. To connect a TCP/IP host to
one of those traditional applications, you should first consider using Telnet. With
Telnet, you should be able to access existing 3270-style basic mapping support
(BMS) applications without modification and without the need for additional
programming. Use CICS TCP/IP when you are developing new peer-to-peer
applications in which both ends of the connection are programmable.

CICS TCP/IP provides a variant of the Berkeley Software Distribution 4.3 Sockets
interface, which is widely used in TCP/IP networks and is based on the UNIX®

system and other operating systems. The socket interface consists of a set of calls
that your CICS application programs can use to set up connections, send and
receive data, and perform general communications control functions. The programs
can be written in COBOL, PL/I, assembler language, or the C language.

System/390

CICS
transaction

CICS
transaction

CICS

Sockets

API

TCP/IP

Services
LAN

UNIX

VAX

CICS region

other
networks

Figure 1. The use of CICS sockets

© Copyright IBM Corp. 1994, 2002 1

TCP/IP internets
This section describes some of the basic ideas behind the TCP/IP family of
protocols. For more detailed and comprehensive treatments of this subject, refer to
the documents on TCP/IP listed in “z/OS Communications Server information” on
page xviii.

Like SNA, TCP/IP is a communication protocol used between physically separated
computer systems. Unlike SNA and most other protocols, TCP/IP is not designed
for a particular hardware technology. TCP/IP can be implemented on a wide variety
of physical networks, and is specially designed for communicating between systems
on different physical networks (local and wide area). This is called internetworking.

Telnet
TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications
with an emulator function called Telnet (TN3270). For these applications, all
program logic is housed in the mainframe, and the remote host uses only that
amount of logic necessary to provide basic communication services. Thus, if your
requirement is simply to provide access from a remote TCP/IP host to existing CICS
MFI applications, you should probably consider Telnet rather than CICS TCP/IP as
the communications vehicle. Telnet 3270-emulation functions allow your TCP/IP
host to communicate with traditional applications without modification.

Client/server processing
TCP/IP also supports client/server processing, where processes are either:

v Servers that provide a particular service and respond to requests for that service

v Clients that initiate the requests to the servers

With CICS TCP/IP, remote client systems can initiate communications with CICS
and cause a CICS transaction to start. It is anticipated that this will be the most
common mode of operation. (Alternatively, the remote system can act as a server
with CICS initiating the conversation.)

TCP, UDP, and IP
TCP/IP is a large family of protocols that is named after its two most important
members. Figure 2 on page 3 shows the TCP/IP protocols used by CICS TCP/IP, in
terms of the layered Open Systems Interconnection (OSI) model, which is widely
used to describe data communication systems. For CICS users who might be more
accustomed to SNA, the left side of Figure 2 shows the SNA layers, which
correspond very closely to the OSI layers.

2 z/OS V1R4.0 CS: IP CICS Sockets Guide

The protocols implemented by TCP/IP Services and used by CICS TCP/IP are
shown in the right hand column in Figure 2:
Transmission Control Protocol (TCP)

In terms of the OSI model, TCP is a transport-layer protocol. It provides a
reliable virtual-circuit connection between applications; that is, a connection is
established before data transmission begins. Data is sent without errors or
duplication and is received in the same order as it is sent. No boundaries are
imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides
an unreliable datagram connection between applications. Data is transmitted
link by link; there is no end-to-end connection. The service provides no
guarantees. Data can be lost or duplicated, and datagrams can arrive out of
order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
datagram service between applications, supporting both TCP and UDP.

The socket API
The socket API is a collection of socket calls that enables you to perform the
following primary communication functions between application programs:
v Set up and establish connections to other users on the network
v Send and receive data to and from other users
v Close down connections

In addition to these basic functions, the APIs enable you to:

v Interrogate the network system to get names and status of relevant resources

v Perform system and control functions as required

CICS TCP/IP provides three TCP/IP socket application program interfaces (APIs),
similar to those used on UNIX systems. One interfaces to C language programs,
the other two to COBOL, PL/I, and assembler language programs.

v C language. Historically, TCP/IP has been linked to the C language and the
UNIX operating system. Textbook descriptions of socket calls are usually given
in C, and most socket programmers are familiar with the C interface to TCP/IP.
For these reasons, TCP/IP Services includes a C language API. If you are writing
new TCP/IP applications and are familiar with C language programming, you

Figure 2. TCP/IP protocols compared to the OSI model and SNA

Chapter 1. Introduction to CICS TCP/IP 3

might prefer to use this interface. See Chapter 7, “C language application
programming” on page 111 for the sockets calls provided by TCP/IP Services.

v Sockets Extended API (COBOL, PL/I, assembler language). The Sockets
Extended API is for those who want to write in COBOL, PL/I, or assembler
language, or who have COBOL, PL/I, or assembler language programs that need
to be modified to run with TCP/IP. If you are writing new TCP/IP applications in
COBOL, PL/I, or assembler language, you might prefer to use the Sockets
Extended API. See Chapter 8, “Sockets extended application programming
interface (API)” on page 143 for details of this interface.

v Version 2.2.1 (COBOL, PL/I, assembler language). This is the API that was
offered to users of the original release of CICS TCP/IP. It is similar in use to the
Sockets Extended API. The Version 2.2.1 API is available for those who want to
maintain Version 2.2.1 programs. This interface is described in Appendix A,
“Original COBOL application programming interface (EZACICAL)” on page 233.

Programming with sockets
The original UNIX socket interface was designed to hide the physical details of the
network. It included the concept of a socket, which would represent the connection
to the programmer, yet shield the program (as much as possible) from the details of
communication programming. A socket is an end-point for communication that can
be named and addressed in a network. From an application program perspective, a
socket is a resource that is allocated by the TCP/IP address space. A socket is
represented to the program by an integer called a socket descriptor.

Socket types
The MVS socket APIs provide a standard interface to the transport and internetwork
layer interfaces of TCP/IP. They support three socket types: stream, datagram, and
raw. Stream and datagram sockets interface to the transport layer protocols, and
raw sockets interface to the network layer protocols. All three socket types are
discussed here for background purposes. While CICS supports stream and
datagram sockets, stream sockets provide the most reliable form of data transfer
offered by TCP/IP.

Stream sockets transmit data between TCP/IP hosts that are already connected to
one another. Data is transmitted in a continuous stream; in other words, there are
no record length or new-line character boundaries between data. Communicating
processes 1 must agree on a scheme to ensure that both client and server have
received all data. One way of doing this is for the sending process to send the
length of the data, followed by the data itself. The receiving process reads the
length and then loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a ″reliable″
connection-oriented service. In this context, the word reliable means that data is
sent without error or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are
sent as independent packets. The service provides no guarantees; data can be lost
or duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 65507). No disassembly and reassembly of packets is
performed by TCP/IP.

1. In TCP/IP terminology, a process is essentially the same as an application program.

4 z/OS V1R4.0 CS: IP CICS Sockets Guide

The raw socket interface allows direct access to lower layer protocols, such as IP
and Internet Control Message Protocol (ICMP). This interface is often used for
testing new protocol implementations.

Addressing TCP/IP hosts
The following section describes how one TCP/IP host addresses another TCP/IP
host. 2

Address families: An address family defines a specific addressing format.
Applications that use the same addressing family have a common scheme for
addressing socket endpoints. TCP/IP for CICS supports the AF_INET address
family.

Socket addresses: A socket address in the AF_INET family contains four fields:
the name of the address family itself (AF_INET), a port, an Internet address, and an
eight-byte reserved field. In COBOL, a socket address looks like this:
01 NAME

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP_ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

You will find this structure in every call that addresses another TCP/IP host.

In this structure, FAMILY is a halfword that defines the addressing family being
used. In CICS, FAMILY is always set to a value of 2, which specifies the AF_INET
Internet address family. 3 The PORT field identifies the application port number; it
must be specified in network byte order. The IP_ADDRESS field is the Internet
address of the network interface used by the application. It also must be specified
in network byte order. The RESERVED field should be set to all zeros.

Internet (IP) addresses: An Internet address (otherwise known as an IP address)
is a 32-bit field that represents a network interface. An IP address is commonly
represented in dotted decimal notation, such as 129.5.25.1. Every Internet address
within an administered AF_INET domain must be unique. A common
misunderstanding is that a host must have only one Internet address. In fact, a
single host may have several Internet addresses, one for each network interface.

Ports: A port is a 16-bit integer that defines a specific application, within an IP
address, in which several applications use the same network interface. The port
number is a qualifier that TCP/IP uses to route incoming data to a specific
application within an IP address. Some port numbers are reserved for particular
applications and are called well-known ports, such as Port 23, which is the
well-known port for Telnet.

As an example, an MVS system with an IP address of 129.9.12.7 might have CICS
as port 2000, and Telnet as port 23. In this example, a client desiring connection to
CICS would issue a CONNECT call, requesting port 2000 at IP address 129.9.12.7.

Note: It is important to understand the difference between a socket and a port.
TCP/IP defines a port to represent a certain process on a certain machine
(network interface). A port represents the location of one process in a host
that can have many processes. A bound socket represents a specific port

2. In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of ″mainframe″ or large
processor within the TCP/IP definition of the word host.

3. Note that sockets support many address families, but TCP/IP for CICS, only supports the Internet address family.

Chapter 1. Introduction to CICS TCP/IP 5

and the IP address of its host. In the case of CICS, the Listener has a
listening socket that has a port to receive incoming connection requests.
When a connection request is received, the Listener creates a new socket
representing the endpoint of this connection and passes it to the applications
by way of the givesocket/takesocket calls.

Note that multiple sockets can share the same port and, for CICS, all server
applications and the Listener share the same port. For client applications, the
bind (or connect) socket calls assign a port to the socket that is different
than the listener/server port or any other client ports. Normally, client
applications do not share ports, but it can be done using the SOREUSADDR
option.

Domain names: Because dotted decimal IP addresses are difficult to remember,
TCP/IP also allows you to represent host interfaces on the network as alphabetic
names, such as Alana.E04.IBM.COM or CrFre@AOL.COM. Every Domain Name
has an equivalent IP address or set of addresses. TCP/IP includes service functions
(GETHOSTBYNAME and GETHOSTBYADDR) that will help you convert from one
notation to another.

Network Byte Order: In the open environment of TCP/IP, Internet addresses must
be defined in terms of the architecture of the machines. Some machine
architectures, such as IBM mainframes, define the lowest memory address to be
the high-order bit, which is called big endian. However, other architectures, such as
IBM PCs, define the lowest memory address to be the low-order bit, which is called
little endian.

Network addresses in a given network must all follow a consistent addressing
convention. This convention, known as Network Byte Order, defines the bit-order of
network addresses as they pass through the network. The TCP/IP standard
Network Byte Order is big-endian. In order to participate in a TCP/IP network,
little-endian systems usually bear the burden of conversion to Network Byte Order.

Note: The socket interface does not handle application data bit-order differences.
Application writers must handle these bit order differences themselves.

A typical client server program flow chart
Stream-oriented socket programs generally follow a prescribed sequence. See
Figure 3 on page 7 for a diagram of the logic flow for a typical client and server. As
you study this diagram, keep in mind the fact that a concurrent server typically
starts before the client does, and waits for the client to request connection at step
�3�. It then continues to wait for additional client requests after the client connection
is closed.

6 z/OS V1R4.0 CS: IP CICS Sockets Guide

Concurrent and iterative servers
An iterative server handles both the connection request and the transaction involved
in the call itself. Iterative servers are fairly simple and are suitable for transactions
that do not last long.

However, if the transaction takes more time, queues can build up quickly. In
Figure 4 on page 8, once Client A starts a transaction with the server, Client B
cannot make a call until A has finished.

Figure 3. A typical client server session

Chapter 1. Introduction to CICS TCP/IP 7

So, for lengthy transactions, a different sort of server is needed — the concurrent
server, as shown in Figure 5. Here, Client A has already established a connection
with the server, which has then created a child server process to handle the
transaction. This allows the server to process Client B’s request without waiting for
A’s transaction to complete. More than one child server can be started in this way.

TCP/IP provides a concurrent server program called the CICS Listener. It is
described in “The Listener” on page 103.

Figure 3 on page 7 illustrates a concurrent server at work.

The basic socket calls
The following is an overview of the basic socket calls.

The following calls are used by the server:

SOCKET
Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN
Tells TCP/IP that this process is listening for connections on this socket.

SELECT
Waits for activity on a socket.

ACCEPT
Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from
the parent server task (Listener) to the child server task (user-written
application).

GIVESOCKET
Gives a socket to a child server task.

Iterative
Server

Client B

Client A

TCP/IP

Figure 4. An iterative server

Concurrent
Server

child
server

process

TCP/IP

Client B

Client A

Figure 5. A concurrent server

8 z/OS V1R4.0 CS: IP CICS Sockets Guide

TAKESOCKET
Accepts a socket from a parent server task.

GETCLIENTID
Optionally used by the parent server task to determine its own address
space name (if unknown) prior to issuing the GIVESOCKET.

The following calls are used by the client:

SOCKET
Allocates a socket to read from or write to.

CONNECT
Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:
WRITE

Sends data to the process on the other host.
READ Receives data from the other host.
CLOSE

Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see Chapter 8, “Sockets extended
application programming interface (API)” on page 143.

Server TCP/IP calls
To understand Socket programming, the client program and the server program
must be considered separately. In this section the call sequence for the server is
described; the next section discusses the typical call sequence for a client. This is
the logical presentation sequence because the server is usually already in
execution before the client is started. The step numbers (such as�5�) in this section
refer to the steps in Figure 3 on page 7.

SOCKET
The server must first obtain a socket �1�. This socket provides an end-point to
which clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address
space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,
the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family (AF_INET), the type of socket
(STREAM), and the particular networking protocol (PROTO) to use. (When PROTO
is set to zero, the TCP/IP address space automatically uses the appropriate
protocol for the specified socket type). Upon return, the newly allocated socket’s
descriptor is returned in RETCODE.

For an example of the SOCKET call, see “SOCKET” on page 216.

BIND
At this point �2�, an entry in the table of communications has been reserved for the
application. However, the socket has no port or IP address associated with it until
the BIND call is issued. The BIND function requires three parameters:
v The socket descriptor that was just returned by the SOCKET call.
v The number of the port on which the server wishes to provide its service.

Chapter 1. Introduction to CICS TCP/IP 9

v The IP address of the network connection on which the server is listening. If the
application wants to receive connection requests from any network interface, the
IP address should be set to zeros.

For an example of the BIND call, see “BIND” on page 148.

LISTEN
After the bind, the server has established a specific IP address and port upon which
other TCP/IP hosts can request connection. Now it must notify the TCP/IP address
space that it intends to listen for connections on this socket. The server does this
with the LISTEN�3� call, which puts the socket into passive open mode. Passive
open mode describes a socket that can accept connection requests, but cannot be
used for communication. A passive open socket is used by a Listener program like
the CICS Listener to await connection requests. Sockets that are directly used for
communication between client and server are known as active open sockets. In
passive open mode, the socket is open for client contacts; it also establishes a
backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin
accepting connections. Normally, only the number of requests specified by the
BACKLOG parameter will be queued.

For an example of the LISTEN call, see “LISTEN” on page 181.

ACCEPT
At this time �5�, the server has obtained a socket, bound the socket to an IP
address and port, and issued a LISTEN to open the socket. The server main task is
now ready for a client to request connection �4�. The ACCEPT call temporarily
blocks further progress. 4

The default mode for Accept is blocking. Accept behavior changes when the socket
is nonblocking. The FCNTL() or IOCTL() calls can be used to disable blocking for a
given socket. When this is done, calls that would normally block continue regardless
of whether the I/O call has completed. If a socket is set to nonblocking and an I/O
call issued to that socket would otherwise block (because the I/O call has not
completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to
TCP/IP. When the connection is established, the ACCEPT call returns a new socket
descriptor (in RETCODE) that represents the connection with the client. This is the
socket upon which the server subtask communicates with the client. Meanwhile, the
original socket (S) is still allocated, bound and ready for use by the main task to
accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling
ACCEPT, a concurrent server can establish simultaneous sessions with multiple
clients.

For an example of the ACCEPT call, see “ACCEPT” on page 146.

GIVESOCKET and TAKESOCKET
A server handling more than one client simultaneously acts like a dispatcher at a
messenger service. A messenger dispatcher gets telephone calls from people who

4. Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to
the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program is
suspended until the expected event completes.

10 z/OS V1R4.0 CS: IP CICS Sockets Guide

want items delivered, and the dispatcher sends out messengers to do the work. In a
similar manner, the server receives client requests, and then spawns tasks to
handle each client.

In UNIX-based servers, the fork() system call is used to dispatch a new subtask
after the initial connection has been established. When the fork() command is used,
the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork()
system call.Tasks use the GIVESOCKET and TAKESOCKET functions to pass
sockets from parent to child. The task passing the socket uses GIVESOCKET, and
the task receiving the socket uses TAKESOCKET. See “GIVESOCKET and
TAKESOCKET calls” on page 15 for more information about these calls.

READ and WRITE
Once a client has been connected with the server, and the socket has been
transferred from the main task (parent) to the subtask (child), the client and server
exchange application data, using various forms of READ/WRITE calls. See
“READ/WRITE calls — the conversation” on page 12 for details about these calls.

Client TCP/IP calls
The TCP/IP call sequence for a client is simpler than the one for a concurrent
server. A client only has to support one connection and one conversation. A
concurrent server obtains a socket upon which it can listen for connection requests,
and then creates a new socket for each new connection.

The SOCKET call
In the same manner as the server, the first call �1� issued by the client is the
SOCKET call. This call causes allocation of the socket on which the client will
communicate.
CALL ’EZASOKET’ USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See “SOCKET” on page 216 for a sample of the SOCKET call.

The CONNECT call
Once the SOCKET call has allocated a socket to the client, the client can then
request connection on that socket with the server through use of the CONNECT call
�4�.

The CONNECT call attempts to connect socket descriptor (S) to the server with an
IP address of NAME. The CONNECT call blocks until the connection is accepted by
the server. On successful return, the socket descriptor (S) can be used for
communication with the server.

This is essentially the same sequence as that of the server; however, the client
need not issue a BIND command because the port of a client has little significance.
The client need only issue the CONNECT call, which issues an implicit BIND. When
the CONNECT call is used to bind the socket to a port, the port number is assigned
by the system and discarded when the connection is closed. Such a port is known
as an ephemeral port because its life is very short as compared with that of a
concurrent server, whose port remains available for a prolonged period of time.

See “CONNECT” on page 151 for an example of the CONNECT call.

Chapter 1. Introduction to CICS TCP/IP 11

READ/WRITE calls — the conversation
A variety of I/O calls is available to the programmer. The READ and WRITE,
READV and WRITEV, and SEND�6� and RECV�6� calls can be used only on
sockets that are in the connected state. The SENDTO and RECVFROM, and
SENDMSG and RECVMSG calls can be used regardless of whether a connection
exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional
features of scatter and gather data. Scattered data can be located in multiple data
buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.
The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the
address in storage of the buffer that contains, or will contain, the data (BUF), and
the amount of data transferred (NBYTE). The server uses the socket that is
returned from the ACCEPT call.

These functions return the amount of data that was either sent or received.
Because stream sockets send and receive information in streams of data, it can
take more than one call to WRITE or READ to transfer all of the data. It is up to the
client and server to agree on some mechanism of signaling that all of the data has
been transferred.

v For an example of the READ call, see “READ” on page 182.

v For an example of the WRITE call, see “WRITE” on page 220.

The CLOSE call
When the conversation is over, both the client and server call CLOSE to end the
connection. The CLOSE call also deallocates the socket, freeing its space in the
table of connections. For an example of the CLOSE call, see “CLOSE” on
page 150.

Other socket calls
Several other calls that are often used, particularly in servers, are the SELECT call,
the GIVESOCKET/TAKESOCKET calls, and the IOCTL and FCTL calls.

The SELECT call
Applications such as concurrent servers often handle multiple sockets at once. In
such situations, the SELECT call can be used to simplify the determination of which
sockets have data to be read, which are ready for data to be written, and which
have pending exceptional conditions. An example of how the SELECT call is used
can be found in Figure 6 on page 13.

12 z/OS V1R4.0 CS: IP CICS Sockets Guide

In this example, the application sends bit sets (the xSNDMASK sets) to indicate
which sockets are to be tested for certain conditions, and receives another set of
bits (the xRETMASK sets) from TCP/IP to indicate which sockets meet the specified
conditions.

The example also indicates a timeout. If the timeout parameter is NULL, this is the
C language API equivalent of a wait forever. (In Sockets Extended, a negative
timeout value is a wait forever.) If the timeout parameter is nonzero, SELECT only
waits the timeout amount of time for at least one socket to become ready under the
indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the xSNDMASK bits are
all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the
xSNDMASKs) and then wait (block) until one of the specified sockets is ready to be
processed. When the SELECT call returns, the program knows only that some
event has occurred, and it must test a set of bit masks (xRETMASKs) to determine
which of the sockets had the event, and what the event was.

To maximize performance, a server should only test those sockets that are active.
The SELECT call allows an application to select which sockets will be tested, and
for what. When the Select call is issued, it blocks until the specified sockets are
ready to be serviced (or, optionally) until a timer expires. When the select call
returns, the program must check to see which sockets require service, and then
process them.

To allow you to test any number of sockets with just one call to SELECT, place the
sockets to test into a bit set, passing the bit set to the select call. A bit set is a
string of bits where each possible member of the set is represented by a 0 or a 1. If
the member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the
member is to be tested. Socket descriptors are actually small integers. If socket 3 is
a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT
function: one bit set for sockets on which to receive data; another for sockets on
which to write data; and any sockets with exception conditions. The SELECT call

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.
01 MAXSOC PIC 9(8) BINARY VALUE 50.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MILLISEC PIC 9(8) BINARY.

01 RSNDMASK PIC X(50).
01 WSNDMASK PIC X(50).
01 ESNDMASK PIC X(50).
01 RRETMASK PIC X(50).
01 WRETMASK PIC X(50).
01 ERETMASK PIC X(50).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMASK WSNDMASK ESNDMASK
RRETMASK WRETMASK ERETMASK
ERRNO RETCODE.

Figure 6. The SELECT call

Chapter 1. Introduction to CICS TCP/IP 13

tests each selected socket for activity and returns only those sockets that have
completed. On return, if a socket’s bit is raised, the socket is ready for reading data
or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is
accustomed to bit strings that are counted from left to right. Instead, these bit
strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of
fullwords. If the highest socket descriptor you want to test is socket descriptor 3,
you have to pass a 4-byte bit string, because this is the minimum length. If the
highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as
INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in Table 1.

Table 1. First fullword passed in a bit string in select

Socket
descriptor
numbers
represented by
byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

In these examples, we use standard assembler numbering notation; the leftmost bit
or byte is relative 0.

If you want to test socket descriptor number 5 for pending read activity, you raise bit
2 in byte 3 of the first fullword (X'00000020'). If you want to test both socket
descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword
(X'00000030').

If you want to test socket descriptor number 32, you must pass two fullwords,
where the numbering scheme for the second fullword resembles that of the first.
Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want to
test socket descriptors 5 and 32, you pass two fullwords with the following content:
X'0000002000000001'.

The bits in the second fullword represent the socket descriptor numbers shown in
Table 2.

Table 2. Second fullword passed in a bit string in select

Socket
descriptor
numbers
represented by
byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

14 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 2. Second fullword passed in a bit string in select (continued)

Socket
descriptor
numbers
represented by
byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 5 55 54 53 52 51 50 49 48

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, you may find that the EZACIC06
routine, which is provided as part of TCP/IP Services, will make it easier for you to
build and test these bit strings. This routine translates between a character string
mask (one byte per socket) and a bit string mask (one bit per socket).

In addition to its function of reporting completion on Read/Write events, the
SELECT call can also be used to determine completion of events associated with
the LISTEN and GIVESOCKET calls.

v When a connection request is pending on the socket for which the main process
issued the LISTEN call, it will be reported as a pending read.

v When the parent process has issued a GIVESOCKET, and the child process has
taken the socket, the parent’s socket descriptor is selected with an exception
condition. The parent process is expected to close the socket descriptor when
this happens.

IOCTL and FCNTL calls
In addition to SELECT, applications can use the IOCTL or FCNTL calls to help
perform asynchronous (nonblocking) socket operations. An example of the use of
the IOCTL call is shown in “IOCTL” on page 177.

The IOCTL call has many functions; establishing blocking mode is only one of its
functions. The value in COMMAND determines which function IOCTL will perform.
The REQARG of 0 specifies nonblocking. (A REQARG of 1 would request that
socket S be set to blocking mode.) When this socket is passed as a parameter to a
call that would block (such as RECV when data is not present), the call returns with
an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode of
the socket to nonblocking allows an application to continue processing without
becoming blocked.

GIVESOCKET and TAKESOCKET calls
Tasks use the GIVESOCKET and TAKESOCKET functions to pass sockets from
parent to child.

For programs using TCP/IP Services, each task has its own unique 8-byte name.
The main server task passes three arguments to the GIVESOCKET call:
v The socket number it wants to give
v Its own name 5

v The name of the task to which it wants to give the socket

If the server does not know the name of the subtask that will receive the socket, it
blanks out the name of the subtask. The first subtask calling TAKESOCKET with
the server’s unique name receives the socket.

5. If a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

Chapter 1. Introduction to CICS TCP/IP 15

The subtask that receives the socket must know the main task’s unique name and
the number of the socket that it is to receive. This information must be passed from
main task to subtask in a work area that is common to both tasks.

v In IMS™, the parent task name and the number of the socket descriptor are
passed from parent (Listener) to child (MPP) through the message queue.

v In CICS, the parent task name and the socket descriptor number are passed
from the parent (Listener) to the transaction program by means of the EXEC
CICS START and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the
main task is not the socket descriptor that the subtask will use. When
TAKESOCKET accepts the socket that has been given, the TAKESOCKET call
assigns a new socket number for the subtask to use. This new socket number
represents the same connection as the parent’s socket. (The transferred socket
might be referred to as socket number 54 by the parent task and as socket number
3 by the subtask; however, both socket descriptors represent the same connection.)

Once the socket has successfully been transferred, the TCP/IP address space
posts an exceptional condition on the parent’s socket. The parent uses the SELECT
call to test for this condition. When the parent task SELECT call returns with the
exception condition on that socket (indicating that the socket has been successfully
passed) the parent issues CLOSE to complete the transfer and deallocate the
socket from the main task.

To continue the sequence, when another client request comes in, the concurrent
server (Listener) gets another new socket, passes the new socket to the new
subtask, dissociates itself from that connection, and so on.

Summary: To summarize, the process of passing the socket is accomplished in
the following way:

v After creating a subtask, the server main task issues the GIVESOCKET call to
pass the socket to the subtask. If the subtask’s address space name and subtask
ID are specified in the GIVESOCKET call (as with CICS), only a subtask with a
matching address space and subtask ID can take the socket. If this field is set to
blanks (as with IMS), any MVS address space requesting a socket can take this
socket.

v The server main task then passes the socket descriptor and concurrent server’s
ID to the subtask using some form of commonly addressable technique such as
the CICS START/RETRIEVE commands.

v The concurrent server issues the SELECT call to determine when the
GIVESOCKET has successfully completed.

v The subtask calls TAKESOCKET with the concurrent server’s ID and socket
descriptor and uses the resulting socket descriptor for communication with the
client.

v When the GIVESOCKET has successfully completed, the concurrent server
issues the CLOSE call to complete the handoff.

An example of a concurrent server is the CICS Listener. It is described in “The
Listener” on page 103. Figure 5 on page 8 shows a concurrent server.

What you must have to run CICS TCP/IP
In order to use the updates described in this document, you must have OS/390®

V2R5 or later.

16 z/OS V1R4.0 CS: IP CICS Sockets Guide

TCP/IP Services is not described in this document since it is a prerequisite for CICS
TCP/IP. However, much material from the TCP/IP library has been repeated in this
document in an attempt to make it independent of that library. For more information
about TCP/IP Services, see the documents listed in “z/OS Communications Server
information” on page xviii.

A TCP/IP host can communicate with any remote CICS or non-CICS system that
runs TCP/IP. The remote system can, for example, run a UNIX or OS/2® operating
system.

CICS TCP/IP components
In terms of CICS operation, the CICS TCP/IP feature is a task-related user exit
(TRUE) mechanism known as an adapter. The adapting facility that it provides is
between application programs that need to access TCP/IP and the manager of the
TCP/IP resource.

CICS TCP/IP has the following main components:

v The stub program is link-edited to each application program that wants to use it.
It intercepts requests issued by the calling application program and causes CICS
to pass control to the TRUE.

v The TRUE enables programs to pass calls to the subtask and to the TCP/IP
address space.

v The MVS subtask translates commands for accessing TCP/IP into a form
acceptable to the TCP/IP resource manager and then passes control to the
resource manager. It also handles the MVS waits incurred during socket calls.

v The Administration Routine contains the EXEC CICS ENABLE and DISABLE
commands that are used to install and withdraw the TRUE program.

v The Configuration System configures the interface and its Listeners.

A summary of what CICS TCP/IP provides
Figure 7 on page 18 shows how CICS TCP/IP allows your CICS applications to
access the TCP/IP network. It shows that CICS TCP/IP makes the following
facilities available to your application programs:

The socket calls
Socket calls are shown in Steps 1 and 2 in Figure 7 on page 18.

The socket API is available in the C language and in COBOL, PL/I, or assembler
language. It includes the following socket calls:

Basic calls: SOCKET,
BIND, CONNECT, LISTEN, ACCEPT, SHUTDOWN, CLOSE

Read/Write calls: SEND,
SENDTO, RECVFROM, READ, WRITE

Advanced calls: GETHOSTNAME, GETPEERNAME, GETSOCKNAME, GETSOCKOPT, SETSOCKOPT,FCNTL,
IOCTL, SELECT,
GETHOSTBYNAME,
GETHOSTBYADDR

IBM-specific calls: INITAPI,
GETCLIENTID, GIVESOCKET, TAKESOCKET

Chapter 1. Introduction to CICS TCP/IP 17

|
|
|
|

CICS TCP/IP provides for both connection-oriented and connectionless (datagram)
services. CICS does not support the IP (raw socket) protocol.

The Listener
CICS TCP/IP includes a concurrent server application, called the Listener, which is
a CICS transaction that uses the EZACIC02 program to perform its function.

The IBM Listener, EZACIC02, allows for WLM registration and deregistration in
support of connection balancing. Refer to z/OS Communications Server: IP
Configuration Reference for information about BIND-based DNS and connection
balancing.

Conversion routines
CICS TCP/IP provides the following conversion routines, which are part of the base
TCP/IP Services product:

v An EBCDIC-to-ASCII conversion routine, used to convert EBCDIC data within
CICS to the ASCII format used in TCP/IP networks and workstations. It is run by
calling module EZACIC04.

v A corresponding ASCII-to-EBCDIC conversion routine (EZACIC05).

v A module that converts COBOL character arrays into bit-mask arrays used in
TCP/IP. This module, which is run by calling EZACIC06, is used with the socket
SELECT call.

v A special routine that decodes the indirectly addressed, variable-length list
(hostent structure) returned by the GETHOSTBYADDR and GETHOSTBYNAME
calls. This function is provided by calling module EZACIC08.

1. C language
socket calls

User
Applications

2. COBOL,ASM.
PL/I calls

4. Conversion
routines

TCP/IP
network

3. Listener

MVS

CICS

TCP/IP
Services

CICS Sockets Applications
Operating

Environment

Figure 7. How user applications access TCP/IP networks with CICS TCP/IP (run-time environment)

18 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 2. Setting up and configuring CICS TCP/IP

This chapter describes the steps required to configure CICS TCP/IP.

It is assumed that both CICS and TCP/IP Services are already installed and
operating on MVS.

Before you can start CICS TCP/IP, you need to do the following:

Task See

Modify the CICS/ESA® job stream to enable
CICS TCP/IP startup.

“MVS JCL — Modifying CICS startup”

Define additional files, programs, maps, and
transient data to CICS using RDO.

“CICS — Defining CICS TCP/IP resources”
on page 20

Modify TCP/IP Services data sets. “TCP/IP services — Modifying data sets” on
page 42

Use the configuration macro (EZACICD), to
build the TCP Configuration data set.

“Building the configuration data set with
EZACICD” on page 44

Use the configuration transaction (EZAC) to
customize the Configuration data set.

“Customizing the configuration data set” on
page 53

Note: You can modify the data set while CICS is running by using EZAC. See
“Configuration transaction (EZAC)” on page 53.

MVS JCL — Modifying CICS startup
Figure 8 on page 20 illustrates the modifications required in the CICS startup job
stream to enable CICS TCP/IP startup. The modifications are highlighted.

© Copyright IBM Corp. 1994, 2002 19

These are the required alterations to the startup of CICS:

1. You must concatenate the data set hlq.SEZALOAD to STEPLIB. This data set
contains CICS TCP/IP module EZACIC03.

2. You must concatenate the data set hlq.SEZATCP to DFHRPL. This data set
contains all the other CICS TCP/IP modules. 6

3. You can add a TCPDATA entry for the output messages from CICS TCP/IP (see
“Transient data definition” on page 36).

4. SYSTCPD explicitly identifies which data set is to be used to obtain the
parameters defined by TCPIP.DATA, which describes the stack you want to use
if there are multiple TCPIP stacks running.6

CICS — Defining CICS TCP/IP resources
The following definitions must be made in CICS:
v Transactions
v Programs (see “Program definitions” on page 23)
v BMS mapset (EZACICM, shown in Figure 24 on page 30)
v Files (see “File definitions” on page 32)
v Transient data queues (see “Transient data definition” on page 36)

Note: For the enhanced Listener, more temporary storage is needed to support
passing a larger amount of data to the security/transaction exit and to the
child server. Depending upon the size of the data defined in the Listener
configuration, temporary storage should be adjusted accordingly.

6. TCP/IP Services data set prefix names might have been modified during installation. When you see the prefix hlq in this document,
substitute the prefix used in your installation.

//SERVA JOB (999,POK),’JOHN DOE’,CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,MSGLEVEL=(1,1)
//CICS EXEC PGM=DFHSIP,REGION=32M,TIME=1440,
// PARM=SYSIN
//SYSIN DD *
SIT=6$,
START=AUTO,
DCT=IP,
GRPLIST=TCPLIST,
GMTEXT=’ WELCOME TO CICS/ESA V3.3.0 WITH TCP/IP SOCKETS INTERFACE’,
APPLID=SCMCICSA
.END
//DFHXRCTL DD DISP=SHR,DSN=CICS330.CNTL.CICS.DFHXRCTL
//STEPLIB DD DISP=SHR,DSN=CICS330.SDFHAUTH
// DD DISP=SHR,DSN=SYS1.CSSLIB
// DD DISP=SHR,DSN=SYS1.COBOL.V1R3M2.COB2CICS
// DD DISP=SHR,DSN=COBOL.V1R3M2.COB2LIB
// DD DISP=SHR,DSN=hlq.SEZALOAD �1�
//DFHRPL DD DISP=SHR,DSN=CICS330.SDFHLOAD
// DD DISP=SHR,DSN=hlq.SEZATCP �2�
// DD DISP=SHR,DSN=SYS1.CSSLIB
// DD DISP=SHR,DSN=SYS1.COBOL.V1R3M2.COB2CICS
// DD DISP=SHR,DSN=COBOL.V1R3M2.COB2LIB
//DFHINTRA DD DISP=SHR,DSN=CICS330.CNTL.CICS.DFHINTRA
//LOGUSR DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//MSGUSR DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//TCPDATA DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136) �3�
//SYSTCPD DD DSN=hlq.SEZAINST(TCPDATA),DISP=SHR �4�...

Figure 8. JCL for CICS startup with the TCP/IP socket interface

20 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|

|
|

For information on defining transactions, programs, and files to the CICS Resource
Definition Online (RDO) facility, refer to CICS Resource Definition Guide.

Transaction definitions
Figures 9, 10, 11, and 12 show the CICS resource definition online (RDO) entries to
define the four transactions required to support CICS TCP/IP:

EZAC Configure the socket interface

EZAO Enable the socket interface (replaces CSKE)

EZAP Internal transaction that is invoked during termination of the socket interface

CSKL Listener task

Note: This is a single Listener. Each Listener in the same CICS region
needs a unique transaction ID.

Note: In the following definitions we have suggested priority of 255. This ensures
timely transaction dispatching, and (in the case of CSKL) maximizes the
connection rate of clients requesting service.

Using storage protection
When running with CICS 3.3.0 on a storage-protection-enabled machine, the EZAP,
EZAO, and CSKL transactions must be defined with TASKDATAKEY(CICS). If this
is not done, EZAO fails with an ASRA abend code indicating an incorrect attempt to
overwrite the CDSA by EZACIC01. The CICS/ESA 3.3 Release Guide contains
more information on storage protection with task-related user exits (TRUEs).

In Figure 10 on page 22, Figure 11 on page 22, and Figure 12 on page 23 note
that, if the machine does not support storage protection or is not enabled for
storage protection, TASKDATAKEY(CICS) is ignored and does not cause an error.

CEDA DEFine
TRansaction : EZAC ALIASES
Group : TCPIPI Alias ==>
DEscription ==> Configure Sockets Interface TASKReq ==>
PROGram ==> EZACIC23 XTRanid ==>
TWasize ==> 00000 TPName ==>
PROFile ==> DFHCICST ==>
PArtitionset ==> XTPname ==>
STatus ==> Enabled ==>
PRIMedsize : 00000 ==>
TASKDATALoc ==> Any RECOVERY
TASKDATAKey ==> USER key DTimout ==> No
REMOTE ATTRIBUTES Indoubt ==> Backout
DYnamic ==> No RESTart ==> No
REMOTESystem ==> RESTart ==> No
REMOTEName ==> SPurge ==> No
TRProf ==> TPUrge ==> No
Localq ==> DUmp ==> Yes
SCHEDULING TRACe ==> Yes
PRIOrity ==> 001 SECURITY
TClass ==> No RESSec ==> No

Cmdsec ==> No
Extsec : No
TRANsec : 01
RSl : 00

Figure 9. EZAC, transaction to configure the socket interface, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 21

CEDA DEFine
TRansaction : EZAO ALIASES
Group : TCPIPI Alias ==>
DEscription ==> Enable Sockets Interface TASKReq ==>
PROGram ==> EZACIC00 XTRanid ==>
TWasize ==> 00000 TPName ==>
PROFile ==> DFHCICST ==>
PArtitionset ==> XTPname ==>
STatus ==> Enabled ==>
PRIMedsize : 00000 ==>
TASKDATALoc ==> Any RECOVERY
TASKDATAKey ==> CICS key DTimout ==> No
REMOTE ATTRIBUTES Indoubt ==> Backout
DYnamic ==> No RESTart ==> No
REMOTESystem ==> RESTart ==> No
REMOTEName ==> SPurge ==> No
TRProf ==> TPUrge ==> No
Localq ==> DUmp ==> Yes
SCHEDULING TRACe ==> Yes
PRIOrity ==> 255 SECURITY
TClass ==> No RESSec ==> No

Cmdsec ==> No
Extsec : No
TRANsec : 01
RSl : 00

Figure 10. EZAO, transaction to enable the socket interface, definition in RDO

CEDA DEFine
TRansaction : EZAP ALIASES
Group : TCPIPI Alias ==>
DEscription ==> Disable Sockets Interface TASKReq ==>
PROGram ==> EZACIC22 XTRanid ==>
TWasize ==> 00000 TPName ==>
PROFile ==> DFHCICST ==>
PArtitionset ==> XTPname ==>
STatus ==> Enabled ==>
PRIMedsize : 00000 ==>
TASKDATALoc ==> Any RECOVERY
TASKDATAKey ==> CICS DTimout ==> No
REMOTE ATTRIBUTES Indoubt ==> Backout
DYnamic ==> No RESTart ==> No
REMOTESystem ==> SPurge ==> No
REMOTEName ==> TPUrge ==> No
TRProf ==> DUmp ==> Yes
Localq ==> TRACe ==> Yes
SCHEDULING SECURITY
PRIOrity ==> 255 RESSec ==> No
TClass ==> No Cmdsec ==> No

Extsec : No
TRANsec : 01
RSl : 00

Figure 11. EZAP, transaction to disable the socket interface

22 z/OS V1R4.0 CS: IP CICS Sockets Guide

Notes:

1. Use of the IBM-supplied Listener is not required.

2. You may use a transaction name other than CSKL.

3. The TASKDATALoc values for EZAO and EZAP and the TASKDATALoc value
for CSKL must all be the same.

Program definitions
Three categories of program are or could be required to support CICS TCP/IP:
v Required programs, CICS definition needed
v Optional programs, CICS definition needed
v Required programs, CICS definition not needed

Required programs, CICS definition needed
You need to define 10 programs and one mapset to run CICS TCP/IP, or to provide
supporting functions:

EZACIC00
The connection manager program. It provides the enabling and disabling of
CICS TCP/IP through the transactions EZAO and EZAP.

EZACIC01
The task related user exit (TRUE).

EZACIC02
The Listener program that is used by the transaction CSKL. This
transaction is started when you enable CICS TCP/IP through the EZAO
transaction.

Note: While you do not need to use the IBM-supplied Listener, you do
need to provide a Listener function.

CEDA DEFine
TRansaction : CSKL ALIASES
Group : TCPIPI Alias ==>
DEscription ==> Listener task TASKReq ==>
PROGram ==> EZACIC02 XTRanid ==>
TWasize ==> 00000 TPName ==>
PROFile ==> DFHCICST ==>
PArtitionset ==> XTPname ==>
STatus ==> Enabled ==>
PRIMedsize : 00000 ==>
TASKDATALoc ==> Any RECOVERY
TASKDATAKey ==> CICS DTimout ==> No
REMOTE ATTRIBUTES Indoubt ==> Backout
DYnamic ==> No RESTart ==> No
REMOTESystem ==> SPurge ==> No
REMOTEName ==> TPUrge ==> No
TRProf ==> DUmp ==> Yes
Localq ==> TRACe ==> Yes
SCHEDULING SECURITY
PRIOrity ==> 255 RESSec ==> No
TClass ==> No Cmdsec ==> No

Extsec : No
TRANsec : 01
RSl : 00

Figure 12. CSKL, Listener task transaction, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 23

EZACIC12
The module that performs WLM registration and deregistration functions for
CICS sockets.

EZACIC20
The initialization/termination front-end module for CICS sockets.

EZACIC21
The initialization module for CICS sockets.

EZACIC22
The termination module for CICS sockets.

EZACIC23
The primary module for the configuration transaction (EZAC).

EZACIC24
The message delivery module for transactions EZAC and EZAO.

EZACIC25
The Domain Name Server (DNS) cache module.

EZACICME
The U.S. English text delivery module.

EZACICM
Has all the maps used by the transactions that enable and disable CICS
TCP/IP.

The following figures show sample RDO definitions of these programs.

Using storage protection: When running with CICS 3.3.0 on a
storage-protection-enabled machine, all the required CICS TCP/IP programs
(EZACIC00/01/02) must have EXECKEY=CICS as part of their CEDA definitions.
The CICS/ESA 3.3 Release Guide contains more information on storage protection
with TRUEs.

Figures 13, 14, and 15 show EZACIC00, EZACIC01, and EZACIC02 defined with
EXECKEY(CICS). Note that, if the machine does not support storage protection or
is not enabled for storage protection, EXECKEY(CICS) is ignored and does not
cause an error.

24 z/OS V1R4.0 CS: IP CICS Sockets Guide

CEDA DEFine
PROGram : EZACIC00
Group : TCPIPI
DEscription ==> Primary program for transaction EZAO
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
DAtalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 13. EZACIC00, connection manager program, definition in RDO

CEDA DEFine
Program : EZACIC01
Group : TCPIPI
DEscription ==> Task Related User Exit (TRUE)
Language ==> Assembler
RELoad ==> No
RESident ==> Yes
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 14. EZACIC01, task related user exit program, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 25

CEDA DEFine
PROGram : EZACIC02
Group : TCPIPI
DEscription ==> IBM Listener
Language ==> Assembler
RELoad ==> No
RESident ==> Yes
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 15. EZACIC02, Listener program, definition in RDO

CEDA DEFine
PROGram : EZACIC20
Group : TCPIPI
DEscription ==> Initialization/Termination for CICS Sockets
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 16. EZACIC20, front-end module for CICS sockets, definition in RDO

26 z/OS V1R4.0 CS: IP CICS Sockets Guide

CEDA DEFine
PROGram : EZACIC12
Group : TCPIPI
DEscription ==> WLM Registration/Deregistration Module
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 17. EZACIC12, WLM registration and deregistration module for CICS sockets

CEDA DEFine
PROGram : EZACIC21
Group : TCPIPI
DEscription ==> Initialization Module for CICS Sockets
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 18. EZACIC21, initialization module for CICS sockets, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 27

CEDA DEFine
PROGram : EZACIC22
Group : TCPIPI
DEscription ==> Termination Module for CICS Sockets
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 19. EZACIC22, termination module for CICS sockets, definition in RDO

CEDA DEFine
PROGram : EZACIC23
Group : TCPIPI
DEscription ==> Primary Module for Transaction EZAC
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> User
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 20. EZACIC23, primary module for transaction EZAC, definition in RDO

28 z/OS V1R4.0 CS: IP CICS Sockets Guide

CEDA DEFine
PROGram : EZACIC24
Group : TCPIPI
DEscription ==> Message Delivery Module for CICS Sockets
Language ==> Assembler
RELoad ==> No
RESident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 21. EZACIC24, message delivery module for CICS sockets, definition in RDO

CEDA DEFine
PROGram : EZACIC25
Group : TCPIPI
DEscription ==> Cache Module for the Domain Name Server
Language ==> Assembler
RELoad ==> No
RESident ==> Yes
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 22. EZACIC25, domain name server cache module, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 29

Optional programs, CICS definition needed
The following two programs are optional. They are the supplied samples. They are
also in hlq.SEZATCP:

EZACICSS
is a sample iterative server. It establishes the connection between CICS
and TCPIP, and receives client request from workstations. See “EZACICSC”
on page 305.

EZACICSC
is sample child server that works with the Listener (EZACIC02). See
“EZACICSS” on page 312.

If these sample programs are used, they require RDO definitions as shown in
Figures 25 and 26.

CEDA DEFine
PROGram : EZACICME
Group : TCPIPI
DEscription ==> US English Text Delivery Module
Language ==> Assembler
RELoad ==> No
RESident ==> Yes
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
Datalocation ==> Any
EXECKey ==> CICS
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 23. EZACICME, U.S. English text delivery module, definition in RDO

CEDA DEFine
Mapset : EZACICM
Group : TCPIPI
Description ==> Mapset for CICS Sockets Interface
REsident ==> No
USAge ==> Transient
USElpacopy ==> No
Status ==> Enabled
RSl : 00

Figure 24. EZACICM, maps used by the EZAO transaction, definition in RDO

30 z/OS V1R4.0 CS: IP CICS Sockets Guide

Required programs, CICS definition not needed
The following programs do not need to be defined to CICS.

EZACICAL
The application stub that invokes the TRUE and passes on the CICS
application’s socket call. This program is in hlq.SEZATCP.

EZACIC03
The MVS subtask that passes data between the CICS socket task and the
transport interface into TCP/IP for MVS. This program is in hlq.SEZALOAD.

EZACIC07
The application stub that handles the C API for non-reentrant programs.
This program is in hlq.SEZATCP.

EZACIC17
The application stub that handles the C API for reentrant programs. This
program is in hlq.SEZATCP.

CEDA DEFine
PROGram : EZACICSS
Group : TCPIPI
DEscription ==> Sample server
Language ==> Cobol
RELoad ==> No
RESident ==> No
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
DAtalocation ==> Below or above
EXECKey ==> USER
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 25. EZACICSS, sample iterative server program, definition in RDO

CEDA DEFine
PROGram : EZACICSC
Group : TCPIPI
DEscription ==> Sample started server
Language ==> Cobol
RELoad ==> No
RESident ==> No
USAge ==> Normal
USElpacopy ==> No
Status ==> Enabled
RSl : 00
Cedf ==> Yes
DAtalocation ==> Below or above
EXECKey ==> USER
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi

Figure 26. EZACICSC, sample child server program, definition in RDO

Chapter 2. Setting up and configuring CICS TCP/IP 31

|
|

File definitions
The updates to CICS TCP/IP include two files: EZACONFG, the sockets
configuration file, and EZACACHE, which is required if you want to use the Domain
Name Server Cache function (EZACIC25).

EZACONFG
Use the following information to define EZACONFG to RDO:

32 z/OS V1R4.0 CS: IP CICS Sockets Guide

Notes:

1. Choose a DSName to fit installation standards.

2. If it is desired to have EZACONFG reside in a file owning region (FOR) and be
accessed indirectly from an application owning region (AOR), the systems
programmer must assure that no CICS socket modules can execute directly in

File ==> EZACONFG
Group ==>
DEscription ==> CICS Sockets Configuration file

VSAM PARAMETERS
DSNAme ==>�1�
Password ==> PASSWORD NOT SPECIFIED
Lsrpoolid ==>1 1-8 | None
DSNSharing ==> Allreqs Allreqs | Modifyreqs
STRings ==> 001 1 - 255
Nsrgroup ==>

REMOTE ATTRIBUTES �2� �3�
REMOTESystem ==>....
REMOTEName ==>........
RECORDSize ==>.... 1 - 32767
Keylength ==>... 1 - 255

INITIAL STATUS
STAtus ==>Enabled Enabled | Disabled | Unenabled
Opentime ==>Startup Firstref | Startup
DIsposition ==>Share Share | Old

BUFFERS
DAtabuffers ==>00002 2 - 32767
Indexbuffers ==>00001 1 - 32767

DATATABLE PARAMETERS
Table ==> No No | Cics | User
Maxnumrecs ==>........ 16 - 16777215

DATA FORMAT
RECORDFormat ==>V V | F

OPERATIONS
Add ==>No No | Yes
BRowse ==>Yes No | Yes
DELete ==>No No | Yes
REAd ==>Yes Yes | No
Update ==>No No | Yes

AUTO JOURNALING
JOurnal ==>No No | 1-99
JNLRead ==>None None | Updatedonly | Readonly | All
JNLSYNCRead ==>No No | Yes
JNLUpdate ==>No No | Yes
JNLAdd ==>None None | Before | AFter | AL1
JNLSYNCWrite ==>No Yes | No

RECOVERY PARAMETERS
RECOVery ==>No No | Backoutonly | All
Fwdrecovlog ==>No No | 1-99
BAckuptype ==>STAtic STAtic | DYNamic

SECURITY
RESsecnum ==>00 0-24 | Public

Figure 27. EZACONFG, defining to RDO

Chapter 2. Setting up and configuring CICS TCP/IP 33

the FOR. That is, do not install any CICS TCP/IP resources other than
EZACONFG in the FOR. Otherwise, EZACONFG can become disabled and will
not be accessible from the AOR.

3. If it is desired to have the EZAC transaction residing in an AOR and indirectly
accessing EZACONFG in the FOR, the ADD, DELETE, and UPDATE
parameters in the FOR’s file definition must be YES. The FOR will therefore be
the only CICS region that can open EZACONFG. Thus, no sharing of
EZACONFG between different CICS regions will be possible.

EZACACHE
If you want to use the Domain Name Server Cache function (EZACIC25), this
definition is required.

Notes:

1. Do not attempt to share a cache file.

2. If the server intends to use WLM connection balancing, it is recommended that
the client does not cache DNS names. Connection balancing relies on
up-to-date information about current capacity of hosts in the sysplex. If DNS
names are retrieved from a cache instead of the DNS/WLM name server,
connections will be made without regard for current host capacity, degrading the
effectiveness of connection balancing. Of course, not caching names can mean
more IP traffic, which in some cases may outweigh the benefits of connection
balancing.

Refer to z/OS Communications Server: IP Configuration Reference for
information on caching issues.

Use the following information to define EZACACHE to RDO:

34 z/OS V1R4.0 CS: IP CICS Sockets Guide

Notes:

1. Choose a DSName to fit installation standards.

2. For strings, specify the maximum number of concurrent users.

3. Databuffers should equal strings multiplied by two.

4. Indexbuffers equals the number of records in the index set.

File ==> EZACACHE
Group ==>
DEscription ==> Domain Name Server Cache Configuration file

VSAM PARAMETERS
DSNAme ==> �1�
Password ==> PASSWORD NOT SPECIFIED
Lsrpoolid ==>1 1-8 | None
DSNSharing ==> Allreqs Allreqs | Modifyreqs
STRings ==> �2� 1 - 255
Nsrgroup ==>

REMOTE ATTRIBUTES
REMOTESystem ==>....
REMOTEName ==>........
RECORDSize ==>.... 1 - 32767
Keylength ==>... 1 - 255

INITIAL STATUS
STAtus ==>Enabled Enabled | Disabled | Unenabled
Opentime ==>Startup Firstref | Startup
DIsposition ==>Old Share | Old

BUFFERS
DAtabuffers ==>�3� 2 - 32767
Indexbuffers ==>�4� 1 - 32767

DATATABLE PARAMETERS
�5� Table ==> User No | Cics | User

Maxnumrecs ==>�6� 16 - 16777215

DATA FORMAT
RECORDFormat ==>V V | F

OPERATIONS
Add ==>Yes No | Yes
BRowse ==>Yes No | Yes
DELete ==>Yes No | Yes
REAd ==>Yes No | Yes
Update ==>Yes No | Yes

AUTO JOURNALING
JOurnal ==>No No | 1-99
JNLRead ==>None None | Updatedonly | Readonly | All
JNLSYNCRead ==>No No | Yes
JNLUpdate ==>No No | Yes
JNLAdd ==>None None | Before | AFter | AL1
JNLSYNCWrite ==>No Yes | No

RECOVERY PARAMETERS
RECOVery ==>No No | Backoutonly | All
Fwdrecovlog ==>No No | 1-99
BAckuptype ==>STAtic STAtic | DYNamic

SECURITY
RESsecnum ==>00 0-24 | Public

Figure 28. EZACACHE, defining to RDO

Chapter 2. Setting up and configuring CICS TCP/IP 35

5. Although it is optional, we recommend specifying Table=User because it makes
the process run faster. For more information on datatables, see CICS Resource
Definition Guide.

6. Maxnumrecs equals the maximum number of destinations queried.

Transient data definition
Figure 29 shows the entries required in the CICS destination control table (DCT) to
define the TCPM transient data queue for CICS TCP/IP. For more information on
the DCT, refer to CICS Resource Definition Guide.

Note that, in �2� below, the destination TCPM may be changed. If so, it must match
the name specified in the ERRORTD parameter of the EZAC DEFINE CICS and/or
the EZACICD TYPE=CICS (refer to “Configuration macro” on page 44).

The Listener writes to the TCPM queue while CICS TCP/IP is enabled. In addition
to this, your own sockets applications can write to this queue using EXEC CICS
WRITEQ TD commands. It is recommended that an extrapartition transient data
queue be defined, as shown by �1� and �2� in Figure 29.

The CICS startup JCL must include a DD statement for this extrapartition transient
data queue (as in Figure 8 on page 20, line �3�).

The Listener transaction can start a server using a transient data queue, as
described in “Listener input format” on page 104. Entry �3� in Figure 29 shows an
entry for an application that is started using the trigger-level mechanism of the DCT.

CICS monitoring
The CICS Sockets Feature uses the CICS Monitoring Facility to collect data about
its operation. There are two collection points: the Task Related User Exit (TRUE)
and the Listener. This data is collected as Performance Class Data. The TRUE
uses Event Monitoring Points (EMPs) with the identifier ’EZA01’ and the Listener
uses Event Monitoring Points (EMPs) with the identifier ’EZA02’.

DFHDCT TYPE=SDSCI, X
BLKSIZE=136, X
DSCNAME=TCPDATA, �1� X
RECFORM=VARUNB, X
RECSIZE=132, X
TYPEFLE=OUTPUT

...

...
DFHDCT TYPE=EXTRA, X

DESTID=TCPM, �2� X
DSCNAME=TCPDATA

...

...
DFHDCT TYPE=INTRA, X

DESTID=TRAA, X
DESTFAC=FILE, �3� X
TRIGLEV=1, X
TRANSID=TRAA

...

...

Figure 29. Addition to the DCT required by CICS TCP/IP

36 z/OS V1R4.0 CS: IP CICS Sockets Guide

Event monitoring points for the TRUE
The TRUE monitors call activity plus use of reusable or attached tasks. The call
activity is monitored by the following classes of calls:

v Initialization (INITAPI or other first call)

v Read (inbound data transfer) calls

v Write (outbound data transfer) calls

v Select calls

v All other calls

There are counters and clocks for each of these classes. In addition, there are
counters for use of Reusable Tasks and use of Attached tasks.

v Counter/Clock 1 - Initialization Call

v Counter/Clock 2 - Read Call

v Counter/Clock 3 - Write Call

v Counter/Clock 4 - Select Call

v Counter/Clock 5 - Other Call

v Counter 6 - Use of a reusable task

v Counter 7 - Use of an attached task

The following Monitor Control Table (MCT) entries make use of the event-monitoring
points in the performance class used by the TRUE.

In the ID parameter, the following specifications are used:

DFHMCT TYPE=INITIAL,SUFFIX=SO
DFHMCT TYPE=EMP,ID=(EZA01.01),CLASS=PERFORM, X

PERFORM=SCLOCK(1),CLOCK=(1,INIT)
DFHMCT TYPE=EMP,ID=(EZA01.02),CLASS=PERFORM, X

PERFORM=PCLOCK(1),CLOCK=(1,INIT)
DFHMCT TYPE=EMP,ID=(EZA01.03),CLASS=PERFORM, X

PERFORM=SCLOCK(2),CLOCK=(2,READ)
DFHMCT TYPE=EMP,ID=(EZA01.04),CLASS=PERFORM, X

PERFORM=PCLOCK(2),CLOCK=(2,READ)
DFHMCT TYPE=EMP,ID=(EZA01.05),CLASS=PERFORM, X

PERFORM=SCLOCK(3),CLOCK=(3,WRITE)
DFHMCT TYPE=EMP,ID=(EZA01.06),CLASS=PERFORM, X

PERFORM=PCLOCK(3),CLOCK=(3,WRITE)
DFHMCT TYPE=EMP,ID=(EZA01.07),CLASS=PERFORM, X

PERFORM=SCLOCK(4),CLOCK=(4,SELECT)
DFHMCT TYPE=EMP,ID=(EZA01.08),CLASS=PERFORM, X

PERFORM=PCLOCK(4),CLOCK=(4,SELECT)
DFHMCT TYPE=EMP,ID=(EZA01.09),CLASS=PERFORM, X

PERFORM=SCLOCK(5),CLOCK=(5,OTHER)
DFHMCT TYPE=EMP,ID=(EZA01.10),CLASS=PERFORM, X

PERFORM=PCLOCK(5),CLOCK=(6,OTHER)
DFHMCT TYPE=EMP,ID=(EZA01.11),CLASS=PERFORM, X

PERFORM=ADDCNT(1,1),COUNT=(6,REUSABLE)
DFHMCT TYPE=EMP,ID=(EZA01.12),CLASS=PERFORM, X

PERFORM=ADDCNT(2,1),COUNT=(7,ATTACHED)
DFHMCT TYPE=EMP,ID=(EZA01.13),CLASS=PERFORM, X

PERFORM=(MLTCNT(1,5)), X
CLOCK=(1,INIT,READ,WRITE,SELECT,OTHER)

DFHMCT TYPE=EMP,ID=(EZA01.14),CLASS=PERFORM, X
PERFORM=(MLTCNT(6,2)), X
COUNT=(6,REUSABLE,ATTACHED)

Figure 30. The Monitor Control Table (MCT) for TRUE

Chapter 2. Setting up and configuring CICS TCP/IP 37

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(EZA01.01)
Start of Initialization Call

(EZA01.02)
End of Initialization Call

(EZA01.03)
Start of Read Call

(EZA01.04)
End of Read Call

(EZA01.05)
Start of Write Call

(EZA01.06)
End of Write Call

(EZA01.07)
Start of Select Call

(EZA01.08)
End of Select Call

(EZA01.09)
Start of Other Call

(EZA01.10)
End of Other Call

(EZA01.11)
First call to Interface Using Reusable Task

(EZA01.12)
First call to Interface Using Attached Task

(EZA01.13)
CICS Task Termination

(EZA01.14)
CICS Sockets Interface Termination

Event monitoring points for the Listener
The Listener monitors the activities associated with connection acceptance and
server task startup. Since it uses the TRUE, the data collected by the TRUE can be
used to evaluate Listener performance.

The Listener counts the following events:

v Number of Connection Requested Accepted

v Number of Transactions Started

v Number of Transactions Rejected Due To Invalid Transaction ID

v Number of Transactions Rejected Due To Disabled Transaction

v Number of Transactions Rejected Due To Disabled Program

v Number of Transactions Rejected Due To Givesocket Failure

v Number of Transactions Rejected Due To Negative Response from Security Exit

v Number of Transactions Not Authorized to Run

v Number of Transactions Rejected Due to I/O Error

v Number of Transactions Rejected Due to No Space

v Number of Transactions Rejected Due to TD Length Error

38 z/OS V1R4.0 CS: IP CICS Sockets Guide

The following Monitor Control Table (MCT) entries make use of the event-monitoring
points in the performance class used by the Listener.

In the ID parameter, the following specifications are used:

(EZA02.01)
Completion of ACCEPT call

(EZA02.02)
Completion of CICS transaction initiation

(EZA02.03)
Detection of Invalid Transaction ID

(EZA02.04)
Detection of Disabled Transaction

(EZA02.05)
Detection of Disabled Program

(EZA02.06)
Detection of Givesocket Failure

(EZA02.07)
Transaction Rejection by Security Exit

(EZA02.08)
Transaction Not Authorized

(EZA02.09)
I/O Error on Transaction Start

DFHMCT TYPE=EMP,ID=(EZA02.01),CLASS=PERFORM, X
PERFORM=ADDCNT(1,1),COUNT=(1,CONN)

DFHMCT TYPE=EMP,ID=(EZA02.02),CLASS=PERFORM, X
PERFORM=ADDCNT(2,1),COUNT=(2,STARTED)

DFHMCT TYPE=EMP,ID=(EZA02.03),CLASS=PERFORM, X
PERFORM=ADDCNT(3,1),COUNT=(3,INVALID)

DFHMCT TYPE=EMP,ID=(EZA02.04),CLASS=PERFORM, X
PERFORM=ADDCNT(4,1),COUNT=(4,DISTRAN)

DFHMCT TYPE=EMP,ID=(EZA02.05),CLASS=PERFORM, X
PERFORM=ADDCNT(5,1),COUNT=(5,DISPROG)

DFHMCT TYPE=EMP,ID=(EZA02.06),CLASS=PERFORM, X
PERFORM=ADDCNT(6,1),COUNT=(6,GIVESOKT)

DFHMCT TYPE=EMP,ID=(EZA02.07),CLASS=PERFORM, X
PERFORM=ADDCNT(7,1),COUNT=(7,SECEXIT)

DFHMCT TYPE=EMP,ID=(EZA02.08),CLASS=PERFORM, X
PERFORM=ADDCNT(8,1),COUNT=(8,NOTAUTH)

DFHMCT TYPE=EMP,ID=(EZA02.09),CLASS=PERFORM, X
PERFORM=ADDCNT(9,1),COUNT=(9,IOERR)

DFHMCT TYPE=EMP,ID=(EZA02.10),CLASS=PERFORM, X
PERFORM=ADDCNT(10,1),COUNT=(10,NOSPACE)

DFHMCT TYPE=EMP,ID=(EZA02.11),CLASS=PERFORM, X
PERFORM=ADDCNT(11,1),COUNT=(11,LENERR)

DFHMCT TYPE=EMP,ID=(EZA02.12),CLASS=PERFORM, X
PERFORM=(MLTCNT(1,11)), X
COUNT=(1,CONN,STARTED,INVALID,DISTRAN,DISPROG,GIVESOKT,SX
ECEXIT,NOTAUTH,IOERR,NOSPACE,LENERR)

DFHMCT TYPE=FINAL
END

Figure 31. The Monitor Control Table (MCT) for Listener

Chapter 2. Setting up and configuring CICS TCP/IP 39

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(EZA02.10)
No Space Available for TD Start Message

(EZA02.11)
TD Length Error

(EZA02.12)
Program Termination

CICS program list table (PLT)
You can allow automatic startup/shutdown of the CICS Sockets Interface through
updates to the PLT. This is achieved through placing the EZACIC20 module in the
appropriate PLT.

To start the CICS Sockets interface automatically, make the following entry in PLTPI
after the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

To shut down CICS Sockets interface automatically, make the following entry in the
PLTSD before the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

System recovery table
The system recovery table (SRT) contains a list of codes for abends that CICS
intercepts. After intercepting one, CICS attempts to remain operational by causing
the offending task to abend.

You can modify the default recovery action by writing your own recovery program.
You do this using the XSRAB global user exit point within the system recovery
program (SRP). For programming information about the XSRAB exit, refer to the
CICS Customization Guide.

Note: Recovery is attempted only if a user task (not a system task) is in control at
the time the abend occurs.

DFHSRT macroinstruction types
The following macroinstructions can be coded in a system recovery table:

v DFHSRT TYPE=INITIAL establishes the control section.

v DFHSRT TYPE=SYSTEM or DFHSRT TYPE=USER specifies the abend codes
that are to be handled.

v DFHSRT TYPE=FINAL concludes the SRT. For details about the TYPE=FINAL
macroinstruction, refer to the CICS Resource Definition Guide.

Control section: The DFHSRT TYPE=INITIAL macroinstruction generates the
system recovery table control section.

MM DFHSRT TYPE=INITIAL
, SUFFIX= xx

MN

For general information about TYPE=INITIAL macroinstructions, including the use of
the SUFFIX operand, refer to the CICS Resource Definition Guide.

Abend codes: The DFHSRT TYPE=SYSTEM and DFHSRT TYPE=USER
macroinstructions indicate the type of abend codes to be intercepted.

40 z/OS V1R4.0 CS: IP CICS Sockets Guide

MM DFHSRT TYPE= SYSTEM , ABCODE= (codes)
USER NO

, RECOVER= YES

MN

SYSTEM
The abend code is an operating system abend code corresponding to an MVS
Sxxx abend code. The abend code must be three hexadecimal digits (xxx)
representing the MVS system abend code Sxxx.

USER
The abend code is a user (including CICS) abend code corresponding to an
MVS Unnnn abend code. The abend code must be a decimal number (nnnn)
representing the user part of the MVS abend code Unnnn. This is usually the
same number as the CICS message that is issued before CICS tries to
terminate abnormally (refer to CICS Messages and Codes).

ABCODE=(codes)
ABCODE includes the abend code (or codes) to be intercepted. If you specify a
single abend code, parentheses are not required. To specify multiple abend
codes, separate the codes with commas.

RECOVER
Specifies whether codes are to be added or removed from the SRT. Code YES
to add the specified codes to the SRT. Code NO to remove the specified codes
from the SRT.

CICS intercepts the following abend codes automatically and tries to recover:
001,002,013,020,025,026,030,032,033,034,035,
036,037,03A,03B,03D,0F3,100,113,137,213,214,
237,283,285,313,314,337,400,413,437,513,514,
613,614,637,713,714,737,813,837,913,A13,A14,
B13,B14,B37,D23,D37,E37

Abend code 0F3 covers various machine check conditions. It also covers the
Alternate Processor Retry condition that can occur only when running on a
multiprocessor. CICS-supplied recovery code attempts to recover from
instruction-failure machine checks on the assumption that they are not permanent. It
also attempts to recover from Alternate Processor Retry conditions.

CICS will try to recover from the standard abend codes above if you code the
system recovery table simply as follows. There is no need to list the standard codes
individually.

DFHSRT TYPE=INITIAL
DFHSRT TYPE=FINAL
END

If you want CICS to handle other errors, you can code the SRT as follows:
DFHSRT TYPE=INITIAL
DFHSRT TYPE=SYSTEM,or USER,

ABCODE=(user or system codes),
RECOVER=YES

DFHSRT TYPE=FINAL
END

If you do not want CICS to try to recover after one or more of the above standard
abend codes occurs, specify the codes with RECOVER=NO (or without the
RECOVER parameter).

Chapter 2. Setting up and configuring CICS TCP/IP 41

Note: Recovery is attempted only if a user task (not a system task) is in control at
the time the abend occurs.

DFHSRT example
Following is an example of the coding required to generate a SRT:

DFHSRT TYPE=INITIAL, *
SUFFIX=K1

DFHSRT TYPE=SYSTEM, *
ABCODE=777, *
RECOVER=YES

DFHSRT TYPE=USER,
ABCODE=(888,999), *
RECOVER=YES

DFHSRT TYPE=USER, *
ABCODE=020

DFHSRT TYPE=FINAL
END

TCP/IP services — Modifying data sets
To run CICS TCP/IP, you need to make entries in the hlq.PROFILE.TCPIP
configuration data set. 7

The hlq.PROFILE.TCPIP data set
You define the CICS region to TCP/IP on MVS in the hlq.PROFILE.TCPIP data set
(described in z/OS Communications Server: IP Configuration Reference and z/OS
Communications Server: IP Configuration Guide). In it, you must provide entries for
the CICS region in the PORT statement, as shown in Figure 32 on page 43.

The format for the PORT statement is:
port_number TCP CICS_jobname

Write an entry for each port that you want to reserve for an application. Figure 32
on page 43 shows two entries, allocating port number 3000 for SERVA, and port
number 3001 for SERVB. SERVA and SERVB are the job names of our CICS regions.

These two entries reserve port 3000 for exclusive use by SERVA and port 3001 for
exclusive use by SERVB. The Listener transactions for SERVA and SERVB should be
bound to ports 3000 and 3001 respectively. Other applications that want to access
TCP/IP on MVS are prevented from using these ports.

Ports that are not defined in the PORT statement can be used by any application,
including SERVA and SERVB if they need other ports.

7. Note that in this document, the abbreviation hlq stands for ’high level qualifier’. This qualifier is installation dependent.

42 z/OS V1R4.0 CS: IP CICS Sockets Guide

Two different CICS Listeners running on the same host can share a port. Refer to
the discussion on port descriptions in z/OS Communications Server: IP
Configuration Reference for more information on ports.

The hlq.TCPIP.DATA data set
For CICS TCP/IP, you do not have to make any extra entries in hlq.TCPIP.DATA.
However, you need to check the TCPIPJOBNAME parameter that was entered during
TCP/IP Services setup. This parameter is the name of the started procedure used
to start the TCP/IP Services address space.

You will need it when you initialize CICS TCP/IP (see Chapter 4, “Starting and
stopping CICS sockets” on page 81). In the example below, TCPIPJOBNAME is set to
TCPV3. The default name is TCPIP.

;
; hlq.PROFILE.TCPIP
; ===================
;
; This is a sample configuration file for the TCPIP address space.
; For more information about this file, see "Configuring the TCPIP
; Address Space" and "Configuring the Telnet Server" in the
; Customization and Administration Manual.

..........

..........
; --
; Reserve PORTs for the following servers.
;
; NOTE: A port that is not reserved in this list can be used by
; any user. If you have TCP/IP hosts in your network that
; reserve ports in the range 1-1023 for privileged
; applications, you should reserve them here to prevent users
; from using them.
PORT

..........

..........
3000 TCP SERVA ; CICS Port for SERVA �1�
3001 TCP SERVB ; CICS Port for SERVB

Figure 32. Definition of the hlq.TCP/IP profile

;**
; *
; Name of Data Set: hlq.TCPIP.DATA *
; *
; This data, TCPIP.DATA, is used to specify configuration *
; information required by TCP/IP client programs. *
; *
;**
; TCPIPJOBNAME specifies the name of the started procedure which was
; used to start the TCP/IP address space. TCPIP is the default.
;
TCPIPJOBNAME TCPV3

..........

..........

..........

Figure 33. The TCPIPJOBNAME parameter in the hlq.TCPIP.DATA data set

Chapter 2. Setting up and configuring CICS TCP/IP 43

Configuring the CICS TCP/IP environment
The Configuration File contains information about the CICS Sockets environment.
The file is organized by two types of objects—CICS instances and Listeners within
those instances. The creation of this data set is done in three stages:

1. Create the empty data set using VSAM IDCAMS (Access Method Services).

2. Initialize the data set using the program generated by the EZACICD macro.
The first two steps are described in “JCL for the configuration macro” on page 50.

3. Add to or modify the data set using the configuration transaction EZAC. This
step is described in “Customizing the configuration data set” on page 53.8

Building the configuration data set with EZACICD

Configuration macro
The configuration macro (EZACICD) is used to build the configuration data set. This
data set can then be incorporated into CICS using RDO and modified using the
configuration transactions (see “Configuration transaction (EZAC)” on page 53). The
macro is keyword-driven with the TYPE keyword controlling the specific function
request. The data set contains one record for each instance of CICS it supports,
and one record for each Listener. The following is an example of the macros
required to create a configuration file for one instance of the CICS/Sockets interface
using one Listener:
EZACICD TYPE=INITIAL, Start of macro assembly input X

FILNAME=EZACICDF, DD name for configuration file X
PRGNAME=EZACICDF Name of batch program to run

EZACICD TYPE=CICS, CICS record definition X
APPLID=CICSPROD, APPLID of CICS region X
TCPADDR=TCPIP, Job/Step name for TCP/IP X
NTASKS=20, Number of subtasks X
DPRTY=0, Subtask dispatch priority difference X
CACHMIN=15, Minimum refresh time for cache X
CACHMAX=30, Maximum refresh time for cache X
CACHRES=10, Maximum number of resident resolvers X
ERRORTD=CSMT, Transient data queue for error msgs X
SMSGSUP=NO STARTED Messages Suppressed?

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=STANDARD, Standard Listener X
APPLID=CICSPROD, Applid of CICS region X
TRANID=CSKL, Transaction name for Listener X
PORT=3010, Port number for Listener X
IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X
MINMSGL=4, Minimum input message length X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
TRANTRN=YES, Is TRANUSR=YES conditional? X
TRANUSR=YES, Translate user data? X
SECEXIT=EZACICSE, Name of security exit program X
WLMGN1=WLMGRP01, WLM group name 1 X
WLMGN2=WLMGRP02, WLM group name 2 X
WLMGN3=WLMGRP03 WLM group name 3

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=ENHANCED, Enhanced Listener X
APPLID=CICSPROD, Applid of CICS region X
TRANID=CSKM, Transaction name for Listener X
PORT=3011, Port number for Listener X

8. The EZAC transaction is modeled after the CEDA transaction used by CICS Resource Definition Online (RDO).

44 z/OS V1R4.0 CS: IP CICS Sockets Guide

IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
CSTRAN=TRN1, Name of child server transaction X
CSSTTYP=KC, Child server startup type X
CSDELAY=000000, Child server delay interval X
MSGLEN=0, Length of input message X
PEEKDAT=NO, Peek option X
MSGFORM=ASCII, Output message format X
SECEXIT=EZACICSE, Name of security exit program X
WLMGN1=WLMGRP04, WLM group name 1 X
WLMGN2=WLMGRP05, WLM group name 2 X
WLMGN3=WLMGRP06 WLM group name 3

EZACICD TYPE=FINAL End of assembly input

TYPE parameter: The TYPE parameter controls the function requests. It may
have the following values:

Value Meaning

INITIAL
Initialize the generation environment. This value should only be used once
per generation and it should be in the first invocation of the macro. For
subparameters, refer to “TYPE=INITIAL”.

CICS Identify a CICS object. This corresponds to a specific instance of CICS and
will create a configuration record. For subparameters, refer to
“TYPE=CICS”.

LISTENER
Identify a Listener object. This will create a Listener record. For
subparameters, refer to “TYPE=LISTENER” on page 46.

FINAL Indicates the end of the generation. There are no subparameters.

TYPE=INITIAL: When TYPE=INITIAL is specified, the following parameters apply:

Value Meaning

PRGNAME
The name of the generated initialization program. The default value is
EZACICDF.

FILNAME
The DDNAME used for the Configuration File in the execution of the
initialization program. The default value is EZACICDF.

TYPE=CICS: When TYPE=CICS is specified, the following parameters apply:

Value Meaning

APPLID
The APPLID of the CICS address space in which this instance of
CICS/Sockets is to run. This field is mandatory.

TCPADDR
The name of the TCP/IP address space.

NTASKS
The number of reusable MVS subtasks that will be allocated for this

Chapter 2. Setting up and configuring CICS TCP/IP 45

execution. This number should approximate the highest number of
concurrent CICS transactions using the TCP/Sockets interface excluding
Listeners. The default value is 20.

DPRTY
The difference between the dispatching priority of the subtasks and the
attaching CICS task. Use this parameter to balance the CPU demand
between CICS and the sockets interface subtasks. Specifying a nonzero
value causes the subtasks to be dispatched at a lower priority than CICS.
Use the default value of 0 unless tuning data indicates that CICS is
CPU-constrained.

CACHMIN
The minimum refresh time for the Domain Name Server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same internet address. Higher
values improve performance but increase the risk of getting an incorrect
(expired) address when resolving a name. The value must be less than
CACHMAX. The default value is 15.

CACHMAX
The maximum refresh time for the Domain Name Server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same internet address. Higher
values improve performance but increase the risk of getting an incorrect
(expired) address when resolving a name. The value must be greater than
CACHMIN. The default value is 30.

CACHRES
The maximum number of concurrent resolvers desired. If the number of
concurrent resolvers is equal to or greater than this value, refresh of cache
records will not happen unless their age is greater than the CACHMAX
value. The default value is 10.

ERRORTD
The name of a Transient Data destination to which error messages will be
written. The default value is CSMT.

SMSGSUP
The value for SMSGSUP is either YES or NO (the default). A value of YES
causes messages EZY1318E, EZY1325I, and EZY1330I to be suppressed.
A value of NO allows these messages to be issued.

Note: For detailed information on CICS sockets messages, see
Appendix D, “CICS sockets messages” on page 277.

TYPE=LISTENER: When TYPE=LISTENER is specified the following parameters
apply:

Value Meaning

APPLID
The APPLID value of the CICS object for which this Listener is being
defined. If this is omitted, the APPLID from the previous TYPE=CICS macro
is used.

TRANID
The transaction name for this Listener. The default is CSKL.

FORMAT
The default value of STANDARD indicates that this is the original CICS

46 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|

Listener that requires the client to send the standard header. The value of
ENHANCED indicates that this is the enhanced CICS Listener that does not
expect the standard header from the client.

PORT The port number this Listener will use for accepting connections. This
parameter is mandatory. The value should be between 2049 and 65535.
The ports may be shared. See z/OS Communications Server: IP
Configuration Reference for more information on port sharing.

BACKLOG
The number of unaccepted connections that can be queued to this Listener.
The default value is 20.

ACCTIME
The time in seconds this Listener will wait for a connection request before
checking for a CICS/Sockets shutdown or CICS shutdown. The default
value is 60. A value of 0 results in the Listener continuously checking for a
connection request without waiting. Setting this to a high value will reduce
the resources used to support the listener on a lightly loaded system and
will consequently lengthen shutdown processing. Conversely, setting this to
a low value will increase resources used to support the listener but facilitate
shutdown processing.

GIVTIME
The time in seconds this Listener will wait for a response to a
GIVESOCKET. If this time expires, the Listener will assume that either the
server transaction did not start or the TAKESOCKET failed. At this time, the
Listener will send the client a message indicating the server failed to start
and close the socket (connection). If this parameter is not specified, the
ACCTIME value is used.

REATIME
The time in seconds this Listener will wait for a response to a READ
request. If this time expires, the Listener will assume that the client has
failed and will terminate the connection by closing the socket. If this
parameter is not specified, no checking for read timeout is done.

CSTRANID
This parameter is specific to the enhanced version of the Listener and
specifies the default child server transaction that the Listener starts. This
can be overridden by the security/transaction exit.

CSSTTYPE
This parameter is specific to the enhanced version of the Listener and
specifies the default start method for the child server task. This can be
overridden by the security/transaction exit. Possible values are IC, KC, and
TD.

IC Indicates that the child server task is started using EXEC CICS
START with the value specified by CSDLYINT (or an overriding
value from the security/transaction exit) as the delay interval.

KC Indicates that the child server task is started using EXEC CICS
START with no delay interval.

TD Indicates that the child server task is started using the EXEC CICS
WRITEQ TD command, which uses transient data to trigger the
child server task.

CSDLYINT
This parameter is specific to the enhanced version of the Listener and is

Chapter 2. Setting up and configuring CICS TCP/IP 47

|
|
|
|
|
|
|
|

applicable only if CSSTTYPE is IC. It specifies the delay interval to be used
on the EXEC CICS START command, in the form hhmmss
(hours/minutes/seconds).

MSGFORM
This parameter is specific to the enhanced version of the Listener and
indicates whether an error message returned to the client should be in
ASCII or EBCDIC. ASCII is the default. MSGFORM is displayed as
MSGFORMat on the EZAC screens.

MSGLENTH
This parameter is specific to the enhanced version of the Listener and
specifies the length of the data to be received from the client. The valid
range is 0 to 999. If the value is 0, the Listener does not read in any data
from the client.

PEEKDATA
This parameter is specific to the enhanced version of the Listener and
applies only if MSGLENTH is not 0. A value of NO indicates that the
Listener performs a normal read of the client data. The child server
application accesses this data in the data area-2 portion of the transaction
input message (TIM). A value of YES indicates that the Listener reads the
data using the peek option; the data remains queued in TCP/IP and the
child server applications actually read it in rather than accessing it through
the TIM.

NUMSOCK
The number of sockets supported by this Listener. One socket is the
listening socket. The others are used to pass connections to the servers
using the GIVESOCKET call so, in effect, one less than this number is the
maximum number of concurrent GIVESOCKET requests that can be active.
The default value is 50.

The number of CICS transactions must be less than what is specified on
the MAXFILEPROC parameter on the BPXPRMxx parmlib member. For
more detail on setting the MAXFILEPROC parameter, see z/OS UNIX
System Services Planning.

WLMGN1
The group name this Listener will use to participate in workload connection
balancing. The group name is used to register the CICS Listener with
Workload Manager (WLM) so that a BIND-based Domain Name System
(DNS) can be used to balance requests across multiple MVS hosts in a
sysplex.

The group name may be from 1 to 12 characters. The name is padded to
the right with blanks to meet the 18 character name required by the
Workload Manager.

The default is no registration.

Refer to z/OS Communications Server: IP Configuration Reference for
information on connection balancing and BIND-based DNS.

WLMGN2
See WLMGN1 for information.

WLMGN3
See WLMGN1 for information.

MINMSGL
This parameter is specific to the standard version of the Listener. The

48 z/OS V1R4.0 CS: IP CICS Sockets Guide

minimum length of the Transaction Initial Message from the client to the
Listener. The default value is 4. The Listener will continue to read on the
connection until this length of data has been received. FASTRD handles
blocking.

IMMED
Specify YES or NO. YES indicates this Listener is to be started when the
interface starts. No indicates this Listener is to be started independently
using the EZAO transaction. The default is YES.

FASTRD
This parameter is obsolete and has been removed from the EZAC screens.
If specified in the EZACICD macro, it is ignored and a warning note is
generated. The Listener always issues a SELECT between ACCEPT and
READ.

TRANTRN
This parameter is specific to the standard version of the Listener. Specify
YES or NO. YES indicates that the translation of the user data is based on
the character format of the transaction code. That is, with YES specified for
TRANTRN, the user data is translated if and only if TRANUSR is YES and
the transaction code is not uppercase EBCDIC. With NO specified for
TRANTRN, the user data is translated if and only if TRANUSR is YES. The
default value for TRANTRN is YES.

Note: Regardless of how TRANTRN is specified, translation of the
transaction code occurs if and only if the first character is not
uppercase EBCDIC.

TRANUSR
This parameter is specific to the standard version of the Listener. Specify
YES or NO. NO indicates that the user data from the Transaction Initial
Message should not be translated from ASCII to EBCDIC. YES indicates
that the user data may be translated depending on TRANTRN and whether
the transaction code is uppercase EBCDIC. The default value for
TRANUSR is YES.

Note: Previous implementations functioned as if TRANTRN and TRANUSR
were both set to YES. Normally, data on the internet is ASCII and
should be translated. The exceptions are data coming from an
EBCDIC client or binary data in the user fields. In those cases, you
should set these values accordingly. If you are operating in a mixed
environment, use of multiple Listeners on multiple ports is
recommended.

Table 3 shows how the Listener handles translation with different combinations of
TRANTRN, TRANSUSR, and character format of the transaction code:

Table 3. Conditions for translation of tranid and user data

TRANTRN TRANUSR Tranid format
Translate
tranid?

Translate user
data?

YES YES EBCDIC NO NO

YES NO EBCDIC NO NO

NO YES EBCDIC NO YES

NO NO EBCDIC NO NO

YES YES ASCII YES YES

Chapter 2. Setting up and configuring CICS TCP/IP 49

Table 3. Conditions for translation of tranid and user data (continued)

TRANTRN TRANUSR Tranid format
Translate
tranid?

Translate user
data?

YES NO ASCII YES NO

NO YES ASCII YES YES

NO NO ASCII YES NO

SECEXIT
The name of the security exit used by this Listener. The default is no
security exit.

JCL for the configuration macro: The configuration macro is used as part of a
job stream to create and initialize the configuration file. The job stream consists of
IDCAMS steps to create the file, the assembly of the initialization module generated
by the configuration macro, linking of the initialization module, and execution of the
initialization module that initializes the file.

Figure 34 on page 51 illustrates a job stream used to define a configuration file.

50 z/OS V1R4.0 CS: IP CICS Sockets Guide

//**//
//* THE FOLLOWING JOB DEFINES AND THEN LOADS THE VSAM *//
//* FILE USED FOR CICS/TCP CONFIGURATION. THE JOBSTREAM *//
//* CONSISTS OF THE FOLLOWING STEPS. *//
//* 1). DELETE A CONFIGURATION FILE IF ONE EXISTS *//
//* 2). DEFINE THE CONFIGURATION FILE TO VSAM *//
//* 3). ASSEMBLE THE INITIALIZATION PROGRAM *//
//* 4). LINK THE INITIALIZATION PROGRAM *//
//* 5). EXECUTE THE INITIALIZATION PROGRAM TO LOAD THE *//
//* FILE *//
//**//
//CONFIG JOB MSGLEVEL=(1,1)
//*
//* THIS STEP DELETES AN OLD COPY OF THE FILE
//* IF ONE IS THERE.
//*
//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE -
CICS.TCP.CONFIG -
PURGE -
ERASE

//*
//* THIS STEP DEFINES THE NEW FILE
//*
//DEFILE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CICS.TCP.CONFIG) VOLUMES(CICSVOL) -
CYL(1 1) -
IMBED -
RECORDSIZE(150 150) FREESPACE(0 15) -
INDEXED) -
DATA (-

NAME(CICS.TCP.CONFIG.DATA) -
KEYS (16 0)) -

INDEX (-
NAME(CICS.TCP.CONFIG.INDEX))

/*
//*

Figure 34. Example of JCL to define a configuration file (Part 1 of 3)

Chapter 2. Setting up and configuring CICS TCP/IP 51

//* THIS STEP ASSEMBLES THE INITIALIZATION PROGRAM
//*
//PRGDEF EXEC PGM=ASMA90,PARM=’OBJECT,TERM’,REGION=1024K
//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB
// DD DISP=SHR,DSNAME=TCPIP.SEZACMAC
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE
//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(400,(500,50)),
// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

EZACICD TYPE=INITIAL, Start of macro assembly input X
FILNAME=EZACICDF, DD name for configuration file X
PRGNAME=EZACICDF Name of batch program to run

EZACICD TYPE=CICS, CICS record definition X
APPLID=CICSPROD, APPLID of CICS region X
TCPADDR=TCPIP, Job/Step name for TCP/IP X
NTASKS=20, Number of subtasks X
DPRTY=0, Subtask dispatch priority difference X
CACHMIN=15, Minimum refresh time for cache X
CACHMAX=30, Maximum refresh time for cache X
CACHRES=10, Maximum number of resident resolvers X
ERRORTD=CSMT, Transient data queue for error msgs X
SMSGSUP=NO STARTED Messages Suppressed?

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=STANDARD, Standard Listener X
APPLID=CICSPROD, Applid of CICS region X
TRANID=CSKL, Transaction name for Listener X
PORT=3010, Port number for Listener X
IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X
MINMSGL=4, Minimum input message length X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
TRANTRN=YES, Is TRANUSR=YES conditional? X
TRANUSR=YES, Translate user data? X
SECEXIT=EZACICSE, Name of security exit program X
WLMGN1=WLMGRP01, WLM group name 1 X
WLMGN2=WLMGRP02, WLM group name 2 X
WLMGN3=WLMGRP03 WLM group name 3

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=ENHANCED, Enhanced Listener X
APPLID=CICSPROD, Applid of CICS region X
TRANID=CSKM, Transaction name for Listener X
PORT=3011, Port number for Listener X
IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X

Figure 34. Example of JCL to define a configuration file (Part 2 of 3)

52 z/OS V1R4.0 CS: IP CICS Sockets Guide

Customizing the configuration data set
There is a CICS object for each CICS that uses the TCP/IP Sockets Interface and
is controlled by the configuration file. The CICS object is identified by the APPLID of
the CICS it references.

There is a Listener object for each Listener defined for a CICS. It is possible that a
CICS may have no Listener, but this is not common practice. A CICS may have
multiple Listeners that are either multiple instances of the supplied Listener with
different specifications, multiple user-written Listeners, or some combination.

Configuration transaction (EZAC)
The EZAC transaction is a panel-driven interface that lets you add, delete, or
modify the configuration file. The following table lists and describes the functions
supported by the EZAC transaction.

Modifying data sets: You can use EZAC to modify a data set while CICS is
running, as long as the data set has been run at least once
before being loaded.

ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
CSTRAN=TRN1, Name of child server transaction X
CSSTTYP=KC, Child server startup type X
CSDELAY=000000, Child server delay interval X
MSGLEN=0, Length of input message X
PEEKDAT=NO, Peek option X
MSGFORM=ASCII, Output message format X
SECEXIT=EZACICSE, Name of security exit program X
WLMGN1=WLMGRP04, WLM group name 1 X
WLMGN2=WLMGRP05, WLM group name 2 X
WLMGN3=WLMGRP06 WLM group name 3

EZACICD TYPE=FINAL End of assembly input
/*
//*
//* THIS STEP LINKS THE INITIALIZATION PROGRAM
//*
//LINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF’,
// REGION=512K,COND=(4,LT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(5,1)),DISP=(NEW,PASS),UNIT=SYSDA
//SYSLMOD DD DSNAME=&&LOADSET(EZACICDF),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(TRK,(1,1,1)),
// DCB=(DSORG=PO,RECFM=U,BLKSIZE=32760)
//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS)

NAME EZACICDF(R)
//*
//* THIS STEP EXECUTES THE INITIALIZATION PROGRAM
//*
//FILELOAD EXEC PGM=EZACICDF,COND=(4,LT)
//STEPLIB DD DSN=&&LOADSET,DISP=(MOD,PASS)
//EZACONFG DD DSNAME=ADTOCICS.EZACONFG,DISP=OLD

Figure 34. Example of JCL to define a configuration file (Part 3 of 3)

Chapter 2. Setting up and configuring CICS TCP/IP 53

Command Object Function

ALTER CICS/Listener Modifies the attributes of an existing
resource definition

CONVERT CICS/Listener Converts CICS/Listener from the standard
Listener that requires the standard header
to the enhanced Listener that does not
require the header.

COPY CICS/Listener v CICS - Copies the CICS object and its
associated Listeners to create another
CICS object. COPY will fail if the new
CICS object already exists.

v Listener - Copies the Listener object to
create another Listener object. COPY will
fail if the new Listener object already
exists.

DEFINE CICS/Listener Creates a new resource definition

DELETE CICS/Listener v CICS - Deletes the CICS object and all of
its associated Listeners.

v Listener - Deletes the Listener object.

DISPLAY CICS/Listener Shows the parameters specified for the
CICS/Listener object.

RENAME CICS/Listener Performs a COPY followed by a DELETE of
the original object.

If you enter EZAC, the following screen is displayed:

ALTER function: The ALTER function is used to change CICS objects or their
Listener objects. If you specify ALter on the EZAC Initial Screen or enter EZAC,AL
on a blank screen, the following screen is displayed:

EZAC APPLID=........
ENTER ONE OF THE FOLLOWING
ALter
CONvert
COpy
DEFine
DELete
DISplay
REName

PF 3 END 9 MSG 12 CNCL

Figure 35. EZAC initial screen

54 z/OS V1R4.0 CS: IP CICS Sockets Guide

Note: You can skip this screen by entering either EZAC,ALTER,CICS or
EZAC,ALTER,LISTENER.

ALTER,CICS: For alteration of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed.

EZAC,ALTER APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LIStener ===> Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 36. EZAC,ALTER screen

EZAC,ALTER,CICS APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 9 MSG 12 CNCL

Figure 37. EZAC,ALTER,CICS screen

Chapter 2. Setting up and configuring CICS TCP/IP 55

The system will request a confirmation of the values displayed. After the changes
are confirmed, the changed values will be in effect for the next initialization of the
CICS sockets interface.

ALTER,LISTENER: For alteration of a Listener, the following screen is displayed:

After the names are entered, one of the following two screens is displayed. The first
screen is displayed for the standard version:

EZAC,ALTER,CICS APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TCPAddr ===> Name of TCP/IP Address Space
NTAsks ===> ... Number of Reusable Tasks
DPRty ===> ... (CICS-Subtask) dispatch priority
CACHMIN ===> ... Minimum Refresh Time for Cache
CACHMAX ===> ... Maximum Refresh Time for Cache
CACHRES ===> .. Maximum Number of Resolvers
ERRortd ===> TD queue for Error Messages
SMSGSUP ===> .. Suppress Task Start Msgs Y|N

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 38. EZAC,ALTER,CICS detail screen

EZAC,ALTER,LISTENER APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

PF 3 END 9 MSG 12 CNCL

Figure 39. ALTER,LISTENER screen

56 z/OS V1R4.0 CS: IP CICS Sockets Guide

The following screen is displayed for the enhanced version:

The system will request a confirmation of the values displayed. After the changes
are confirmed, the changed values will be in effect for the next initialization of the
CICS sockets interface.

EZAC,ALTER,LISTENER (standard format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MINMSGL ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
TRANTRN ===> ... Translate TRNID Yes|No
TRANUSR ===> ... Translate User Data Yes|No
USEREXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 40. EZAC,ALTER,LISTENER detail screen - Standard version

EZAC,ALTER,LISTENER (enhanced format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MSGLENTH ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
CSTRANID ===> .. Transaction Name of Child Server
CSSTTYPE ===> .. Startup Method IC|KC|TD
CSDLYINT ===> .. Delay Interval for Child Server Task
MSGFORMAT ===> .. Output Message Format ASCII|EBCDIC
PEEKDATA ===> .. Peek Data Only Option
SECEXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 41. EZAC,ALTER,LISTENER detail screen - Enhanced version

Chapter 2. Setting up and configuring CICS TCP/IP 57

CONVERT function: The CONVERT function is used to convert between standard
and enhanced versions of the Listener. If you specify CONvert on the EZAC Initial
Screen or enter EZAC,CON on a blank screen, the following screen is displayed:

After the names and format type are entered, one of the following two screens is
displayed. The first screen is displayed for the standard version:

EZAC,CONVERT,LISTENER APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener
FORMAT ===> STANDARD STANDARD or ENHANCED version of Listener?

PF 3 END 9 MSG 12 CNCL

Figure 42. EZAC,CONVERT,LISTENER screen

EZAC,CONVERT,LISTENER (standard format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MINMSGL ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
TRANTRN ===> ... Translate TRNID Yes|No
TRANUSR ===> ... Translate User Data Yes|No
USEREXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM CONvert FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 43. EZAC,CONVERT,LISTENER detail screen - Standard version

58 z/OS V1R4.0 CS: IP CICS Sockets Guide

The following screen is displayed for the enhanced version:

The system will request a confirmation of the values displayed. After the changes
are confirmed, the changed values will be in effect for the next initialization of the
CICS sockets interface.

COPY function: The COPY function is used to copy an object into a new object. If
you specify COpy on the EZAC Initial Screen or enter EZAC,CO on a blank screen,
the following screen is displayed:

EZAC,CONVERT,LISTENER (enhanced format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MSGLENTH ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
CSTRANID ===> .. Transaction Name of Child Server
CSSTTYPE ===> .. Startup Method IC|KC|TD
CSDLYINT ===> .. Delay Interval for Child Server Task
MSGFORMAT ===> .. Output Message Format ASCII|EBCDIC
PEEKDATA ===> .. Peek Data Only Option
SECEXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM CONvert FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 44. EZAC,CONVERT,LISTENER detail screen - Enhanced version

Chapter 2. Setting up and configuring CICS TCP/IP 59

Note: You can skip this screen by entering either EZAC,COPY,CICS or
EZAC,COPY,LISTENER.

COPY,CICS: If you specify CICS on the previous screen, the following screen is
displayed:

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the copy is
performed.

EZAC,COPY APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LIStener ===> Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 45. EZAC,COPY screen

EZAC,COPY APPLID=........
ENTER ALL FIELDS
SCICS ===> APPLID of Source CICS
TCICS ===> APPLID of Target CICS

PF 3 END 9 MSG 12 CNCL

Figure 46. EZAC,COPY,CICS screen

60 z/OS V1R4.0 CS: IP CICS Sockets Guide

COPY,LISTENER: If you specify COPY,LISTENER, the following screen is
displayed:

After the APPLIDs of the source and target CICS objects and the names of the
source and target Listeners are entered, confirmation is requested. When the
confirmation is entered, the copy is performed.

DEFINE function: The DEFINE function is used to create CICS objects and their
Listener objects. If you specify DEFine on the EZAC Initial Screen or enter
EZAC,DEF on a blank screen, the following screen is displayed:

EZAC,COPY APPLID=........
ENTER ALL FIELDS
SCICS ===> APPLID of Source CICS
SLISTener ===> Transaction Name of Source Listener
TCICS ===> APPLID of Target CICS
TLISTener ===> Transaction Name of Target Listener

PF 3 END 9 MSG 12 CNCL

Figure 47. EZAC,COPY,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 61

Note: You can skip this screen by entering either EZAC,DEFINE,CICS or
EZAC,DEFINE,LISTENER.

DEFINE,CICS: For definition of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed.

EZAC,DEFINE APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LIStener ===> Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 48. EZAC,DEFINE screen

EZAC,DEFINE,CICS APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 9 MSG 12 CNCL

Figure 49. EZAC,DEFINE,CICS screen

62 z/OS V1R4.0 CS: IP CICS Sockets Guide

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DEFINE,LISTENER: For definition of a Listener, the following screen is displayed:

After the names are entered, one of the two following screens is displayed. The first
screen is displayed for the standard version:

EZAC,DEFINE,CICS APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TCPAddr ===> Name of TCP/IP Address Space
NTAsks ===> ... Number of Reusable Tasks
DPRty ===> ... (CICS-Subtask) dispatch priority
CACHMIN ===> ... Minimum Refresh Time for Cache
CACHMAX ===> ... Maximum Refresh Time for Cache
CACHRES ===> .. Maximum Number of Resolvers
ERRortd ===> TD queue for Error Messages
SMSGSUP ===> .. Suppress Task Start Msgs Y|N

PRESS ENTER TO CONFIRM DEFine FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 50. EZAC,DEFINE,CICS detail screen

EZAC,DEFINE,LISTENER APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener
FORMAT ===> STANDARD STANDARD or ENHANCED version of Listener?

PF 3 END 9 MSG 12 CNCL

Figure 51. EZAC,DEFINE,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 63

The following screen is displayed for the enhanced version:

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DELETE function: The DELETE function is used to delete a CICS object or a
Listener object. Deleting a CICS object deletes all Listener objects within that CICS

EZAC,DEFINE,LISTENER (standard format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MINMSGL ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
TRANTRN ===> ... Translate TRNID Yes|No
TRANUSR ===> ... Translate User Data Yes|No
USEREXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 52. EZAC,DEFINE,LISTENER detail screen - Standard version

EZAC,DEFINE,LISTENER (enhanced format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MSGLENTH ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
CSTRANID ===> .. Transaction Name of Child Server
CSSTTYPE ===> .. Startup Method IC|KC|TD
CSDLYINT ===> .. Delay Interval for Child Server Task
MSGFORMAT ===> .. Output Message Format ASCII|EBCDIC
PEEKDATA ===> .. Peek Data Only Option
SECEXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 53. EZAC,DEFINE,LISTENER detail screen - Enhanced version

64 z/OS V1R4.0 CS: IP CICS Sockets Guide

object. If you specify DELete on the EZAC initial screen or enter EZAC,DEL on a
blank screen, the following screen is displayed:

DELETE,CICS: If you specify DELETE,CICS, the following screen is displayed:

After the APPLID is entered, confirmation is requested. When the confirmation is
entered, the CICS object is deleted.

EZAC,DELETE APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> ... Enter Yes|No
LISTener ===> ... Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 54. EZAC,DELETE screen

EZAC,DELETE,CICS APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 9 MSG 12 CNCL

Figure 55. EZAC,DELETE,CICS screen

Chapter 2. Setting up and configuring CICS TCP/IP 65

DELETE,LISTENER: If you specify DELETE,LISTENER, the following screen is
displayed:

After the APPLID and Listener name are entered, confirmation is requested. When
confirmation is entered, the Listener object is deleted

DISPLAY function: The DISPLAY function is used to display the specification of
an object. If you specify DISplay on the initial EZAC screen or enter EZAC,DIS on a
blank screen, the following screen is displayed:

EZAC,DELETE,LISTENER APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

PF 3 END 9 MSG 12 CNCL

Figure 56. EZAC,DELETE,LISTENER screen

66 z/OS V1R4.0 CS: IP CICS Sockets Guide

Note: You can skip this screen by entering either EZAC,DISPLAY,CICS or
EZAC,DISPLAY,LISTENER.

DISPLAY,CICS: If you specify DISPLAY,CICS, the following screen is displayed:

After the APPLID is entered, the following screen is displayed:

EZAC,DISPLAY APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LIStener ===> Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 57. EZAC,DISPLAY screen

EZAC,DISPLAY APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 9 MSG 12 CNCL

Figure 58. EZAC,DISPLAY,CICS screen

Chapter 2. Setting up and configuring CICS TCP/IP 67

DISPLAY,LISTENER: If you specify DISPLAY,LISTENER, the following screen is
displayed:

After the APPLID and name are entered, one of the two following screens is
displayed. The first screen is displayed for the standard version:

EZAC,DISPLAY,CICS APPLID=........

APPLID ===> APPLID of CICS System
TCPAddr ===> Name of TCP/IP Address Space
NTAsks ===> ... Number of Reusable Tasks
DPRty ===> ... (CICS-Subtask) dispatch priority
CACHMIN ===> ... Minimum Refresh Time for Cache
CACHMAX ===> ... Maximum Refresh Time for Cache
CACHRES ===> .. Maximum Number of Resolvers
ERRortd ===> TD queue for Error Messages

PF 3 END 9 MSG 12 CNCL

Figure 59. EZAC,DISPLAY,CICS detail screen

EZAC,DISPLAY APPLID=........
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

PF 3 END 9 MSG 12 CNCL

Figure 60. EZAC,DISPLAY,LISTENER screen

68 z/OS V1R4.0 CS: IP CICS Sockets Guide

The following screen is displayed for the enhanced version:

RENAME function: The RENAME function is used to rename a CICS or Listener
object. It consists of a COPY followed by a DELETE of the source object. For a
CICS object, the object and all of its associated Listeners are renamed. For a
Listener object, only that Listener is renamed.

EZAC,DISPLAY,LISTENER (standard format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MINMSGL ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
TRANTRN ===> ... Translate TRNID Yes|No
TRANUSR ===> ... Translate User Data Yes|No
USEREXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 61. EZAC,DISPLAY,LISTENER detail screen - Standard version

EZAC,DISPLAY,LISTENER (enhanced format) APPLID=........
OVERTYPE TO ENTER

APPLID ===> APPLID of CICS System
TRANID ===> Transaction Name of Listener
PORT ===> Port Number of Listener
IMMEDIATE ===> ... Immediate Startup Yes|No
BACKLOG ===> ... Backlog Value for Listener
NUMSOCK ===> .. Number of Sockets in Listener
MSGLENTH ===> .. Minimum Message Length
ACCTIME ===> .. Timeout Value for Accept
GIVTIME ===> .. Timeout Value for Givesocket
REATIME ===> .. Timeout Value for Read
CSTRANID ===> .. Transaction Name of Child Server
CSSTTYPE ===> .. Startup Method IC|KC|TD
CSDLYINT ===> .. Delay Interval for Child Server Task
MSGFORMAT ===> .. Output Message Format ASCII|EBCDIC
PEEKDATA ===> .. Peek Data Only Option
SECEXIT ===> Name of User/Security Exit
WLM groups ===> ===> ===>

PRESS ENTER TO CONFIRM ALter FUNCTION

PF 3 END 9 MSG 12 CNCL

Figure 62. EZAC,DISPLAY,LISTENER detail screen - Enhanced version

Chapter 2. Setting up and configuring CICS TCP/IP 69

If you specify REName on the initial EZAC screen or enter EZAC,REN on a blank
screen, the following screen is displayed:

Note: You can skip this screen by entering either EZAC,RENAME,CICS or
EZAC,RENAME,LISTENER.

RENAME,CICS: If you specify CICS on the previous screen, the following screen
is displayed:

EZAC,RENAME APPLID=........
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LIStener ===> Enter Yes|No

PF 3 END 9 MSG 12 CNCL

Figure 63. EZAC,RENAME screen

EZAC,RENAME APPLID=........
ENTER ALL FIELDS

SCICS ===> APPLID of Source CICS
TCICS ===> APPLID of Target CICS

PF 3 END 9 MSG 12 CNCL

Figure 64. EZAC,RENAME,CICS screen

70 z/OS V1R4.0 CS: IP CICS Sockets Guide

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the rename is
performed.

RENAME,LISTENER: If you specify RENAME,LISTENER, the following screen is
displayed:

After the APPLIDs of the source and target CICS objects and the names of the
source and target Listeners are entered, confirmation is requested. When the
confirmation is entered, the rename is performed.

UNIX Systems Services environment affects on IP CICS sockets
The UNIX MAXFILEPROC parameter of the BPXPRMxx parmlib member will
control the number of sockets that a CICS task can have open concurrently. You
can use this parameter to limit the number of socket descriptors that a process can
have, thereby limiting the amount of CICS and system resources a single process
can use at one time.

For more information on how MAXFILEPROC affects tuning applications, refer to
z/OS UNIX System Services Planning. The z/OS configuration tool, called Managed
System Infrastructure (msys), contains additional information about the impacts of
the UNIX MAXFILEPROC parameter settings.

EZAC,RENAME APPLID=........
ENTER ALL FIELDS

SCICS ===> APPLID of Source CICS
SLISTener ===> Transaction Name of Source Listener
TCICS ===> APPLID of Target CICS
TLISTener ===> Transaction Name of Target Listener

PF 3 END 9 MSG 12 CNCL

Figure 65. EZAC,RENAME,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 71

|
|
|
|
|

72 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 3. Configuring the CICS Domain Name System cache

The Domain Name System (DNS) is like a telephone book that contains a person’s
name, address, and telephone number. The name server maps a host name to an
IP address, or an IP address to a host name. For each host, the name server can
contain IP addresses, nicknames, mailing information, and available well-known
services (for example, SMTP, FTP, or Telnet).

Translating host names into IP addresses is just one way of using the DNS. Other
types of information related to hosts may also be stored and queried. The different
possible types of information are defined through input data to the name server in
the resource records.

While the CICS DNS cache function is optional, it is useful in a highly active CICS
client environment. It combines the GETHOSTBYNAME() call supported in CICS
Sockets and a cache that saves results from the GETHOSTBYNAME() for future
reference. If your system gets repeated requests for the same set of domain
names, using the DNS will improve performance significantly.

If the server intends to use WLM connection balancing, it is recommended that the
client does not cache DNS names. Connection balancing relies on up-to-date
information about current capacity of hosts in the sysplex. If DNS names are
retrieved from a cache instead of the DNS/WLM name server, connections will be
made without regard for current host capacity, degrading the effectiveness of
connection balancing. Of course, not caching names can mean more IP traffic,
which in some cases may outweigh the benefits of connection balancing.

Refer to z/OS Communications Server: IP Configuration Reference for information
on caching issues.

Function components
The function consists of three parts.

v A VSAM file which is used for the cache.

Note: The CICS DATATABLE option may be used with the cache.

v A macro, EZACICR, which is used to initialize the cache file.

v A CICS application program, EZACIC25, which is invoked by the CICS
application in place of the GETHOSTBYNAME socket call.

VSAM cache file
The cache file is a VSAM KSDS (Key Sequenced Data Set) with a key of the host
name padded to the right with binary zeros. The cache records contain a
compressed version of the hostent structure returned by the name server plus a
time of last refresh field. When a record is retrieved, EZACIC25 determines if it is
usable based on the difference between the current time and the time of last
refresh.

EZACICR macro
The EZACICR macro builds an initialization module for the cache file, because the
cache file must start with at least one record to permit updates by the EZACIC25
module. To optimize performance, you can preload dummy records for the host
names which you expect to be used frequently. This results in a more compact file

© Copyright IBM Corp. 1994, 2002 73

and minimizes the I/O required to use the cache. If you do not specify at least one
dummy record, the macro will build a single record of binary zeros. See “Step 1:
Create the initialization module” on page 75.

EZACIC25 module
This module is a normal CICS application program which is invoked by an EXEC
CICS LINK command. The COMMAREA passes information between the invoking
CICS program and the DNS Module. If domain name resolves successfully,
EZACIC25 obtains storage from CICS and builds a hostent structure in that storage.
When finished with the hostent structure, release this storage using the EXEC CICS
FREEMAIN command.

The EZACIC25 module uses four parameters plus the information passed by the
invoking application to manage the cache. These parameters are as follows:

Error destination
The Transient Data destination to which error messages are sent.

Minimum refresh time
The minimum time in minutes between refreshes of a cache record. If a
cache record is ’younger’ than this time, it will be used. This value is set to
15 (minutes).

Maximum refresh time
The maximum time in minutes between refreshes of a cache record. If a
cache record is ’older’ than this time, it will be refreshed. This value is set to
30 (minutes).

Maximum resolver requests
The maximum number of concurrent requests to the resolver. It is set at 10.
See “How the DNS cache handles requests”.

How the DNS cache handles requests
When a request is received where cache retrieval is specified, the following takes
place:

1. Attempt to retrieve this entry from the cache. If not successful, issue the
GETHOSTBYNAME call unless request specifies cache only.

2. If cache retrieval is successful, calculate the ’age’ of the record (the difference
between the current time and the time this record was created or refreshed).

v If the age is not greater than minimum cache refresh, use the cache
information and build the Hostent structure for the requestor. Then return to
the requestor.

v If the age is greater than the maximum cache refresh, issue the
GETHOSTBYNAME call and refresh the cache record with the results.

v If the age is between the minimum and maximum cache refresh values, do
the following:

a. Calculate the difference between the maximum and minimum cache
refresh times and divide it by the maximum number of concurrent resolver
requests. The result is called the time increment.

b. Multiply the time increment by the number of currently active resolver
requests. Add this time to the minimum refresh time giving the adjusted
refresh time.

c. If the age of the record is less than the adjusted refresh time, use the
cache record.

74 z/OS V1R4.0 CS: IP CICS Sockets Guide

d. If the age of the record is greater than the adjusted refresh time, issue
the GETHOSTBYNAME call and refresh the cache record with the
results.

v If the GETHOSTBYNAME is issued and is successful, the cache is updated
and the update time for the entry is changed to the current time.

Using the DNS cache
There are three steps to using the DNS cache.

1. Create the initialization module, which in turn defines and initializes the file and
the EZACIC25 module. See “Step 1: Create the initialization module”.

2. Define the cache files to CICS. See “Step 2: Define the cache file to CICS” on
page 78.

3. Use EZACIC25 to replace GETHOSTBYNAME calls in CICS application
modules. See “Step 3: Execute EZACIC25” on page 79.

Step 1: Create the initialization module
The initialization module is created using the EZACICR macro. A minimum of two
invocations of the macro are coded and assembled and the assembly produces the
module. An example follows:

EZACICR TYPE=INITIAL
EZACICR TYPE=FINAL

This produces an initialization module which creates one record of binary zeros. If
you wish to preload the file with dummy records for frequently referenced domain
names, it would look like this:

EZACICR TYPE=INITIAL
EZACICR TYPE=RECORD,NAME=HOSTA
EZACICR TYPE=RECORD,NAME=HOSTB
EZACICR TYPE=RECORD,NAME=HOSTC
EZACICR TYPE=FINAL

where HOSTA, HOSTB, AND HOSTC are the host names you want in the dummy
records. The names can be specified in any order.

The specifications for the EZACICR macro are as follows:

Operand Meaning

TYPE There are three acceptable values:

Value Meaning

INITIAL Indicates the beginning of the generation input. This
value should only appear once and should be the
first entry in the input stream.

RECORD Indicates a dummy record the user wants to
generate. There can be from 0 to 4096 dummy
records generated and each of them must have a
unique name. Generating dummy records for
frequently used host names will improve the
performance of the cache file. A TYPE=INITIAL
must precede a TYPE=RECORD statement.

FINAL Indicates the end of the generation input. This value

Chapter 3. Configuring the CICS Domain Name System cache 75

should only appear once and should be the last
entry in the input stream. A TYPE=INITIAL must
precede a TYPE=FINAL.

AVGREC The length of the average cache record. This value is specified on
the TYPE=INITIAL macro and has a default value of 500. It is
recommend that you use the default value until you have adequate
statistics to determine a better value. This parameter is the same as
the first subparameter in the RECORDSIZE parameter of the
IDCAMS DEFINE statement. Accurate definition of this parameter
along with use of dummy records will minimize control interval and
control area splits in the cache file.

NAME Specifies the host name for a dummy record. The name must be
from 1 to 255 bytes long. The NAME operand is required for
TYPE=RECORD entries.

The macro can be used in conjunction with IDCAMS to define and load the file.
Figure 66 on page 77 shows a sample job to define and initialize a cache file:

76 z/OS V1R4.0 CS: IP CICS Sockets Guide

//**//
//* THE FOLLOWING JOB DEFINES AND THEN LOADS THE VSAM *//
//* FILE USED FOR THE CACHE. THE DEFINITION CONSISTS OF *//
//* TWO IDCAMS STEPS TO PERFORM THE VSAM DEFINITION *//
//* AND A STEP USING EZACICR TO BUILD THE FILE LOAD *//
//* PROGRAM. THE FINAL STEP EXECUTES THE FILE LOAD *//
//* PROGRAM TO CREATE THE FILE. *//
//**//
//CACHEDEF JOB MSGLEVEL=(1,1)
//*
//* THIS STEP DELETES AN OLD COPY OF THE FILE
//* IF ONE IS THERE.
//*
//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE -
CICS.USER.CACHE -
PURGE -
ERASE

//*
//* THIS STEP DEFINES THE NEW FILE
//*
//DEFILE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CICS.USER.CACHE) VOLUMES(CICVOL) -
CYL(1 1) -
IMBED -
RECORDSIZE(500 1000) FREESPACE(0 15) -
INDEXED) -
DATA (-

NAME(CICS.USER.CACHE.DATA) -
KEYS (255 0)) -

INDEX (-
NAME(CICS.USER.CACHE.INDEX))

/*
//*
//* THIS STEP DEFINES THE FILE LOAD PROGRAM
//*
//PRGDEF EXEC PGM=ASMA90,PARM=’OBJECT,TERM’,REGION=1024K
//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB
// DD DISP=SHR,DSNAME=TCPV34.SEZACMAC
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE
//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(400,(500,50)),
// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Figure 66. Example of defining and initializing a DNS cache file (Part 1 of 2)

Chapter 3. Configuring the CICS Domain Name System cache 77

Once the cache file has been created, it has the following layout:

Field name Description

Host name A 255-byte character field specifying the host name. This field is the
key to the file.

Record type A 1-byte binary field specifying the record type. The value is
X’00000001’.

Last refresh time
An 8-byte packed field specifying the last refresh time. It is
expressed in seconds since 0000 hours on January 1, 1990 and is
derived by taking the ABSTIME value obtained from an EXEC CICS
ASKTIME and subtracting the value for January 1, 1990.

Offset to alias pointer list
A halfword binary field specifying the offset in the record to
DNSALASA.

Number of INET addresses
A halfword binary field specifying the number of INET addresses in
DNSINETA.

INET addresses
One or more fullword binary fields specifying INET addresses
returned from GETHOSTBYNAME().

Alias names An array of variable length character fields specifying the alias
names returned from the name server cache. These fields are
delimited by a byte of binary zeros. Each of these fields have a
maximum length of 255 bytes.

Step 2: Define the cache file to CICS
All CICS definitions required to add this function to a CICS system can be done
using CICS RDO without disruption to the operation of the CICS system.

Use the following parameters with RDO FILE to define the cache file:

RDO keyword Value

//SYSIN DD *
EZACICR TYPE=INITIAL
EZACICR TYPE=RECORD,NAME=RALVM12
EZACICR TYPE=FINAL

/*
//LINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF’,
// REGION=512K,COND=(4,LT)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(5,1)),DISP=(NEW,PASS),UNIT=SYSDA
//SYSLMOD DD DSNAME=&&LOADSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(TRK,(1,1,1)),
// DCB=(DSORG=PO,RECFM=U,BLKSIZE=32760)
//SYSLIN DD DSNAME=&&OBJSET,DISP=(OLD,DELETE)
//*
//* THIS STEP EXECUTES THE FILE LOAD PROGRAM
//*
//LOAD EXEC PGM=*.LINK.SYSLMOD,COND=((4,LT,ASM),(4,LT,LINK))
//EZACICRF DD DSN=CICS.USER.CACHE,DISP=OLD

Figure 66. Example of defining and initializing a DNS cache file (Part 2 of 2)

78 z/OS V1R4.0 CS: IP CICS Sockets Guide

File EZACACHE

Group Name of group you are placing this function in.

DSName Must agree with name defined in the IDCAMS step
above (for example, CICS.USER.CACHE).

STRings Maximum number of concurrent users.

Opentime Startup

Disposition Old

DAtabuffers STRings value X 2

Indexbuffers Number of records in index set.

Table User

Maxnumrecs Maximum number of destinations queried.

RECORDFormat V

Use the following parameters with RDO PROGRAM to define the EZACIC25
module:

RDO keyword Value

PROGram EZACIC25

Group Name of group you are placing this function in

Language Assembler

Step 3: Execute EZACIC25
EZACIC25 replaces the GETHOSTBYNAME socket call. It is invoked by a EXEC
CICS LINK COMMAREA(com-area) where com-area is defined as follows:

Field name Description

Return code A fullword binary variable specifying the results of the function:

Value Meaning

-1 ERRNO value returned from GETHOSTBYNAME() call.
Check ERRNO field.

0 Host name could not be resolved either within the cache or
by use of the GETHOSTBYNAME call.

Note: In some instances, a 10214 errno will be returned
from the resolve which can mean that the host name
could not be resolved by use of the
GETHOSTBYNAME call.

1 Host name was resolved using cache.

2 Host name was resolved using GETHOSTBYNAME call.

ERRNO A fullword binary field specifying the ERRNO returned from the
GETHOSTBYNAME call.

HOSTENT address
The address of the returned HOSTENT structure.

Command A 4-byte character field specifying the requested operation.

Value Meaning

Chapter 3. Configuring the CICS Domain Name System cache 79

GHBN GETHOSTBYNAME. This is the only function supported.

Namelen A fullword binary variable specifying the actual length of the host
name for the query.

Query_Type A 1-byte character field specifying the type of query:

Value Meaning

0 Attempt query using cache. If unsuccessful, attempt using
GETHOSTBYNAME() call.

1 Attempt query using GETHOSTBYNAME() call. This forces
a cache refresh for this entry.

2 Attempt query using cache only.

Note: If the cache contains a matching record, the contents of that
record will be returned regardless of its age.

Name A 256-byte character variable specifying the host name for the
query.

HOSTENT structure
The returned HOSTENT structure is shown in Figure 67.

Hostent

Hostname

Address of

Address of

X'00000002'

X'00000004'

Address of

Name X'00'

Address of

Address of

Address of

Address of

Address of

Address of INET Addr#3

Alias#3 X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#1

Alias#1 X'00'

X'00000000'

X'00000000'

Figure 67. The DNS HOSTENT

80 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 4. Starting and stopping CICS sockets

This chapter explains how to start and stop (enable and disable) CICS TCP/IP. It
describes how:

v You can customize your system so that CICS TCP/IP starts and stops
automatically. See “Starting/stopping CICS TCP/IP automatically”.

v An operator can also start and stop CICS TCP/IP manually after CICS has been
initialized. See “Starting/stopping CICS TCP/IP manually”.

v You can also start and stop CICS TCP/IP from a CICS application program. See
“Starting/stopping CICS TCP/IP with program link” on page 87.

Starting/stopping CICS TCP/IP automatically
You can start and stop the CICS Sockets Interface automatically by modifying the
CICS Program List Table (PLT).

v Startup (PLTPI)

To start the CICS Sockets interface automatically, make the following entry in
PLTPI after the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

v Shutdown (PLTSD)

To shut down CICS Sockets interface automatically, make the following entry in
the PLTSD before the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

Starting/stopping CICS TCP/IP manually
You can start CICS TCP/IP manually by using the EZAO transaction. This
operational transaction has four functions:

Interface Startup
Starts the interface in a CICS address space and starts all Listeners that
are identified for immediate start. Replaces part of the CSKE transaction.

Note: The EZAO transaction must be running on the CICS where you want
to start the CICS Sockets Interface. You may not start a CICS
Sockets Interface from a different CICS.

Interface Shutdown
Stops the interface in a CICS address space. Replaces part of the CSKD
transaction.

Listener Startup
Starts a Listener in a CICS address space. Replaces part of the CSKE
transaction.

Listener Shutdown
Stops a Listener in a CICS address space. Replaces part of the CSKD
transaction.

Note: Since the PLT method is now available, the Card Reader Line Printer
(CRLP) method of starting the CICS Sockets Interface and Listener is no
longer supported. If the EZAO transaction is invoked using CARDIN, it will
fail with abend EZAO because the EZAO transaction should be invoked only
from a VTAM® terminal. The EZAO abend is issued by the EZAO or EZAC

© Copyright IBM Corp. 1994, 2002 81

transaction program when an EXEC CICS SEND MAP or EXEC CICS
RECEIVE MAP command fails in trying to send or receive screens to the
VTAM terminal.

When you enter EZAO, the following screen is displayed.

START function
The START function starts either the CICS Sockets Interface or a Listener within
the interface. When the interface is started, all Listeners marked for immediate start
will be started as well. If you enter STA on the previous screen or enter EZAO STA on
a blank screen, the following screen is displayed.

EZAO
ENTER ONE OF THE FOLLOWING
STArt
STOp

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 68. EZAO initial screen

82 z/OS V1R4.0 CS: IP CICS Sockets Guide

START CICS
If you enter START CICS, the following screen is displayed.

START LISTENER
If you enter START LISTENER, the following screen is displayed.

EZAO START
ENTER ONE OF THE FOLLOWING

CICS ===> ... Enter Yes|No
LIStener ===> ... Enter Yes|No

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 69. EZAO START screen

EZAO START CICS

CICS ===> APPLID APPLID of CICS System

RESULT MESSAGE APPEARS HERE

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 70. EZAO START CICS response screen

Chapter 4. Starting and stopping CICS sockets 83

After you enter the Listener name, the Listener is started. The following screen is
displayed; the results appear in the message area.

STOP function
The STOP function is used to stop either the CICS Sockets Interface or a Listener
within the interface. If the interface is stopped, all Listeners will be stopped before

EZAO START LISTENER
ENTER LISTENER NAME

CICS ===> APPLID APPLID of CICS System
NAME ===> Transaction Name of Listener

APPLID=DBDCCICS

PF 3 END 9 MSG 12 CNCL

Figure 71. EZAO START LISTENER screen

EZAO START LISTENER

CICS ===> APPLID APPLID of CICS system
NAME ===> XXXX Transaction Name of Listener

RESULT MESSAGE APPEARS HERE

APPLID=DBDCCICS

PF 3 END 9 MSG 12 CNCL

Figure 72. EZAO START LISTENER result screen

84 z/OS V1R4.0 CS: IP CICS Sockets Guide

the interface is stopped. If you enter STO on the previous screen or enter EZAO
STO on a blank screen, the following screen is displayed.

STOP CICS
If you specify STOP CICS, the following screen is displayed.

Two options are available to stop CICS TCP/IP:

EZAO STOP
ENTER ONE OF THE FOLLOWING

CICS ===> ... Enter Yes|No
LIStener ===> ... Enter Yes|No

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 73. EZAO STOP screen

EZAO STOP CICS
SPECIFY IMMEIDATE STOP

CICS ===> ... APPLID of CICS
IMMEDIATE ===> ... Enter Yes|No

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 74. EZAO STOP CICS screen

Chapter 4. Starting and stopping CICS sockets 85

IMMEDIATE=NO
This should be used in most cases, because it causes the graceful
termination of the interface. It has the following effects on applications using
this API:

v The Listener transaction (CSKL) quiesces after a maximum wait of 3
minutes provided that no other socket applications are active or
suspended.

v If there are active or suspended sockets applications, the Listener will
allow them to continue processing. When all of these tasks are
completed, the Listener terminates.

v This option denies access to this API for all new CICS tasks. Tasks that
start after CICS TCP/IP has been stopped END with the CICS abend
code AEY9.

IMMEDIATE=YES
This option is reserved for unusual situations and causes the abrupt
termination of the interface. It has the following effect on applications using
this API:

v It force purges the master server (Listener) CSKL.

v It denies access to the API for all CICS tasks. Tasks that have
successfully called the API previously will abend with the AETA abend
code on the next socket call. New tasks that have started are denied by
the AEY9 abend code.

After you choose an option, the stop will be attempted. The screen redisplays; the
results appear in the message line.

STOP LISTENER
If you specify STOP LISTENER, the following screen is displayed.

When you enter the Listener named, that Listener will be stopped. The screen
redisplays; the results appear in the message line.

EZAO STOP
ENTER LISTENER NAME
CICS ===> DBDCCICS APPLID of this CICS
LIStener ===> Transaction Name of Listener

APPLID=DBDCCICS

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 75. EZAO STOP LISTENER screen

86 z/OS V1R4.0 CS: IP CICS Sockets Guide

Starting/stopping CICS TCP/IP with program link
You can start or stop the CICS Sockets Interface by issuing an EXEC CICS LINK to
program EZACIC20. Make sure you include the following steps in the LINKing
program:

1. Define the COMMAREA for EZACIC20. This can be done by including the
following instruction within your DFHEISTG definition:

EZACICA AREA=P20,TYPE=CSECT

The length of the area is equated to P20PARML and the name of the structure
is P20PARMS.

2. Initialize the COMMAREA values as follows:

P20TYPE

I Initialization

T Immediate Termination

D Deferred Termination

P20OBJ

C CICS Sockets Interface

L Listener

P20LIST
Name of Listener if this is Listener initialization/termination.

3. Issue the EXEC CICS LINK to program EZACIC20. EZACIC20 will not return
until the function is complete.

4. Check the P20RET field for the response from EZACIC20.

Note: The following user abend codes may be issued by EZACIC20:

v E20L is issued if the CICS Socket Interface is not in startup or termination
and no COMMAREA was provided.

v E20T is issued if CICS is not active.

Chapter 4. Starting and stopping CICS sockets 87

88 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 5. Writing your own Listener

The revised CICS Sockets Interface provides a structure which supports up to 255
Listeners. These Listeners may be multiple copies of the IBM-supplied Listener,
user-written Listeners, or a combination of the two. You may choose to run without
a Listener as well.

For each Listener (IBM-Supplied or user-written), there are certain basic
requirements that enable the interface to manage the Listeners correctly, particularly
during initialization and termination. They are:

v Each Listener instance must have a unique transaction name, even if you are
running multiple copies of the same Listener.

v Each Listener should have an entry in the CICS sockets configuration data set.
Even if you don’t use automatic initiation for your Listener, the lack of an entry
would prevent correct termination processing and could prevent CICS from
completing a normal shutdown.

For information on the IBM-supplied Listener, see “The Listener” on page 103.

Prerequisites
Some installations may require a customized, user-written Listener. Writing your
own Listener has the following prerequisites:

1. Determine what capability is required that is not supplied by the IBM-supplied
Listener. Is this capability a part of the Listener or a part of the server?

2. Knowledge of the CICS-Assembler environment is required.

3. Knowledge of multi-threading applications is required. A Listener must be able to
perform multiple functions concurrently to achieve good performance.

4. Knowledge of the CICS Sockets Interface is required.

Using IBM’s environmental support
A user-written Listener may use the environmental support supplied and used by
the IBM-Supplied Listener. To employ this support, the user-written Listener must do
the following in addition to the requirements described above:

v The user-written Listener must be written in Assembler.

v The RDO definitions for the Listener transaction and program should be identical
to those for the IBM-supplied Listener with the exception of the
transaction/program names.

v In the program, define an input area for configuration file records. If you are
going to read the configuration file using MOVE mode, you can define the area
by making the following entry in your DFHEISTG area:

EZACICA AREA=CFG,TYPE=CSECT

If you are going to read the configuration file using LOCATE mode you can
define a DSECT for the area as follows:

EZACICA AREA=CFG,TYPE=DSECT

In either case, the length of the area is represented by the EQUATE label
CFGLEN. The name of the area/DSECT is CFG0000.

v In the program, define a DSECT for mapping the Global Work Area (GWA). This
is done by issuing the following macro:

© Copyright IBM Corp. 1994, 2002 89

EZACICA AREA=GWA,TYPE=DSECT

The name of the DSECT is GWA0000.

v In the program, define a DSECT for mapping the Task Interface Element (TIE).
This is done by issuing the following macro:

EZACICA AREA=TIE,TYPE=DSECT

The name of the DSECT is TIE0000.

v In the program define a DSECT for mapping the Listener Control Area (LCA).
This is done by issuing the following macro:

EZACICA AREA=LCA,TYPE=DSECT

The name of the DSECT is LCA0000.

v Obtain address of the GWA. This can be done using the following CICS
command:

EXEC CICS EXTRACT EXIT PROGRAM(EZACIC01) GASET(ptr) GALEN(len)

where ptr is a register and len is a halfword binary variable. The address of the
GWA is returned in ptr and the length of the GWA is returned in len.

v Read the configuration file during initialization of the Listener. The configuration
file is identified as EZACONFG in the CICS Configuration file. The record key for
the user-written Listener is as follows:

– APPLID

An 8-byte character field set to the APPLID value for this CICS. This value
can be obtained from the field GWACAPPL in the GWA or by using the
following CICS command:

EXEC CICS ASSIGN APPLID(applid)

where applid is an 8-byte character field.

– Record Type

A 1-byte character field set to the record type. It must have the value ’L’.

– Reserved Field

A 3-byte hex field set to binary zeros.

– Transaction

A 4-byte character field containing the transaction name for this Listener. It
can be obtained from the EIBTRNID field in the Execute Interface Block.

The configuration record provides the information entered by either the
configuration macro or the EZAC transaction. The user-written Listener may use
this information selectively, but it is highly recommended it uses the port,
backlog, and number of sockets data.

For shared files: If the user-written Listener reads the configuration file, it must
first issue an EXEC CICS SET command to enable and open
the file. When the file operation is complete, the user-written
Listener must issue an EXEC CICS SET command to disable
and close the file. Failure to do so will result in file errors in
certain shared-file situations.

v The user-written Listener should locate its Listener Control Area (LCA). The
LCAs are located contiguously in storage with the first one pointed to by the
GWALCAAD field in the GWA. The correct LCA has the transaction name of the
Listener in the field LCATRAN.

90 z/OS V1R4.0 CS: IP CICS Sockets Guide

v The user-written Listener should set the LCASTAT field to a value of x’04’ (active)
so that the CICS sockets interface is aware that the Listener is active. Otherwise
the CICS sockets Listener termination logic will bypass the posting of the
Listeners termination ECB.

v The user-written Listener should monitor either the LCASTAT field in the LCA or
the GWATSTAT field in the GWA for shutdown status. If either field shows an
immediate shutdown in progress, the user-written Listener should terminate by
issuing an EXEC CICS RETURN and allow the interface to clean up any socket
connections. If either field shows a deferred termination in progress, the
user-written Listener should do the following:

1. Accept any pending connections and then close the passive (listen) socket.

2. Complete processing of any sockets involved in transaction initiation (that is,
processing the GIVESOCKET command). When processing is complete,
close these sockets.

3. When all sockets are closed, issue an EXEC CICS RETURN.

v The user-written Listener should avoid socket calls which imply blocks dependent
on external events such as ACCEPT or READ. These calls should be preceded
by a single SELECTEX call that waits on the ECB LCATECB in the LCA. This
ECB is posted when an immediate termination is detected, and its posting will
cause the SELECTEX to complete with a RETCODE of 0 and an ERRNO of 0.
The program should check the ECB when the SELECTEX completes in this way
as this is identical to the way SELECTEX completes when a timeout happens.
The ECB may be checked by looking for a X’40’ in the first byte (post bit).

This SELECTEX should specify a timeout value. This provides the Listener with a
way to periodically check for a deferred termination request. Without this, CICS
Sockets Deferred Termination or CICS Deferred Termination cannot complete.

v The user-written Listener should use a non-reusable subtask. This is
accomplished by issuing the INITAPI with the letter L in the last byte of the
subtask name. This allows the user-written Listener to implement the termination
and detach logic the same way the IBM-supplied Listener does.

v The user-written Listener should update LCASTAT with one of the following:
LCASTAT DS X Status of this Listener
LCASTAT0 EQU B’00000000’ Listener not in operation
LCASTATI EQU B’00000001’ Listener in initialization
LCASTATS EQU B’00000010’ Listener in SELECT
LCASTATP EQU B’00000100’ Listener processing
LCASTATE EQU B’00001000’ Listener had initialization error
LCASTATC EQU B’00010000’ Immediate termination in progress
LCASTATD EQU B’00100000’ Deferred termination in progress

An appropriate value to move into LCASTAT would be LCASTATP (B’00000100’)
when the user-written Listener starts. This will allow the CICS socket logic to
correctly post the LCATECB during both deferred and immediate termination.

WLM registration and deregistration for sysplex connection
optimization

If you are writing your own Listener(s), an interface to EZACIC12 is available and
can be used for registration and deregistration. The registration and deregistration
should be done at the same times the IBM Listener does it. It is important to
deregister for any termination situation since the Workload Manager will not detect
the termination of a Listener (it does detect CICS termination) and the Domain
Name Server could continue to respond to gethostbyname () requests within the
address of this Listener.

Chapter 5. Writing your own Listener 91

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

The interface to EZACIC12 is through the EXEC CICS LINK. The linking program
(Listener) builds a COMMAREA for EZACIC12. The format of this COMMAREA is
described below and, for assembler use, issuing the macro EZACICA
TYPE={CSECT|DSECT},AREA=P12 will provide a storage definition or DSECT for
the area.

The format of the COMMAREA for EZACIC12 is as follows:

Field name
Description

P12CONFG
A 4-byte field containing the address of the Configuration Record for this
Listener.

P12REGST
A one byte field output from WLM Registration. A one byte field input for
WLM Deregistration.

The same value output from Registrations should be input for the
associated Deregistration. The byte represents the registration status of up
to three WLM groups. Each bit within the byte represents a WLM group
registration.

B’00000000’
No WLM groups registered.

B’00000001’
WLM group 1 registered.

B’00000010’
WLM group 2 registered.

B’00000100’
WLM group 3 registered.

P12TYPE
A 1-byte character field containing the request code for EZACIC12.

C’R’ Registration.

C’D’ Deregistration.

P12HOST
A 24-character field containing the host name for EZACIC12. It is the
Domain Name of the host that the Listener is executing on as obtained by
the gethostname() socket call. EZACIC12 will pad it to the right with blanks
to meet the WLM requirement.

92 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

Chapter 6. Application programming guide

This chapter describes how to write applications that use the IP CICS Sockets API.
It describes typical sequences of calls for client, concurrent server (with associated
child server processes), and iterative server programs. The contents of the chapter
are:
v Four setups for writing CICS TCP/IP applications:

– Concurrent server (the supplied Listener transaction) and child server
processes run under CICS TCP/IP.

– The same as 1 but with a user-written concurrent server.

– An iterative server running under CICS TCP/IP.

– A client application running under CICS TCP/IP.
v Socket addresses
v MVS address spaces
v GETCLIENTID, GIVESOCKET, and TAKESOCKET commands
v The Listener program

Chapter 7, “C language application programming” on page 111 describes the C
language calls that can be used with CICS.

Chapter 8, “Sockets extended application programming interface (API)” on page 143
provides reference information on the Sockets Extended API for COBOL, PL/I, and
Assembler language. The Sockets Extended API is the recommended interface for
new application development.

Note: Appendix A, “Original COBOL application programming interface
(EZACICAL)” on page 233 provides reference information on the EZACICAL
API for COBOL and assembler language. This interface was made available
in a prior release of TCP/IP Services and is being retained in the current
release for compatibility. For the best results, however, use the Sockets
Extended API whenever possible. It is described in Chapter 8, “Sockets
extended application programming interface (API)” on page 143.

Writing CICS TCP/IP applications
Chapter 1, “Introduction to CICS TCP/IP” on page 1 describes the basics of TCP/IP
client/server systems and the two types of server: iterative and concurrent. This
chapter considers in detail four TCP/IP setups in which CICS TCP/IP applications
are used in various parts of the client/server system.

The setups are:

v The client-Listener-child server application set. The concurrent server and
child server processes run under CICS TCP/IP. The concurrent server is the
supplied Listener transaction. The client might be running TCP/IP under one of

© Copyright IBM Corp. 1994, 2002 93

|
|
|
|
|

|
|

|

|

|
|
|
|
|

the various UNIX operating systems such as AIX®.

v Writing your own concurrent server. This is the same setup as the first except
that a user-written concurrent server is being used instead of the IBM Listener.

v The iterative server CICS TCP/IP application. This setup is designed to
process one socket at a time.

v The client CICS TCP/IP application. In this setup, the CICS application is the
client and the server is the remote TCP/IP process.

MVS/AIX

Client

Concurrent
or

Iterative
Server

CICS Sockets

For details of how the CICS TCP/IP calls should be specified, see Chapter 7, “C
language application programming” on page 111, Chapter 8, “Sockets extended
application programming interface (API)” on page 143, and Appendix A, “Original
COBOL application programming interface (EZACICAL)” on page 233.

1. The client-Listener-child-server application set
Figure 76 on page 95 shows the sequence of CICS commands and socket calls
involved in this setup. CICS commands are prefixed by EXEC CICS; all other
numbered items in the figure are CICS TCP/IP calls.

94 z/OS V1R4.0 CS: IP CICS Sockets Guide

Client call sequence
Table 4 explains the functions of each of the calls listed in Figure 76.

Table 4. Calls for the client application

(1) INITAPI Connect the CICS application to the TCP/IP interface. (This call is
only used by applications written in Sockets Extended or the
EZACICAL interface). Use the MAX-SOCK parameter to specify the
maximum number of sockets to be used by the application.

(2) SOCKET This obtains a socket. You define a socket with three parameters:
v The domain, or addressing family
v The type of socket
v The protocol

For CICS TCP/IP, the domain can only be the TCP/IP internet
domain (2 in COBOL, AF_INET in C). The type can be stream
sockets (1 in COBOL, SOCK_STREAM in C), or datagram sockets (2 in
COBOL, SOCK_DGRAM in C). The protocol can be either TCP or UDP.
Passing 0 for the protocol selects the default protocol.

If successful, the SOCKET call returns a socket descriptor, s, which
is always a small integer. Notice that the socket obtained is not yet
attached to any local or destination address.

(1) INITAPI
(2) SOCKET
(3) CONNECT

(11) INITAPI
(12) SOCKET
(13) BIND
(14) LISTEN
(15) GETCLEINTID
(16) SELECTEX

(7) EXEC CICS RETRIEVE
(8) TAKESOCKET

(9) READ/WRITE

(10) CLOSE

(18) READ
(19) EXEC CICS INQ ‘SERV’
(20) GIVESOCKET
(21) EXEC CICS START ‘SERV’

(17) ACCEPT

(22) SELECT
(23) CLOSE

(4) WRITE/SEND ‘SERV’

S
O
C
K
E
T
S

S
O
C
K
E
T
S

S
O
C
K
E
T
S

(5) READ/WRITE

(6) CLOSE

Program CLIENT

Transaction SERV
calling

program SERVER

IBM-supplied transaction
CSKL calling program

LISTENER
EZACIC02

Client:

Concurrent server:

Child server:

Figure 76. The sequence of sockets calls

Chapter 6. Application programming guide 95

Table 4. Calls for the client application (continued)

(3) CONNECT Client applications use this to establish a connection with a remote
server. You must define the local socket s (obtained above) to be
used in this connection and the address and port number of the
remote socket. The system supplies the local address, so on
successful return from CONNECT, the socket is completely defined,
and is associated with a TCP connection (if stream) or UDP
connection (if datagram).

(4) WRITE This sends the first message to the Listener. The message contains
the CICS transaction code as its first four bytes of data. You must
also specify the buffer address and length of the data to be sent.

(5) READ/WRITE These calls continue the conversation with the server until it is
complete.

(6) CLOSE This closes a specified socket and so ends the connection. The
socket resources are released for other applications.

Listener call sequence
The Listener transaction CSKL is provided as part of CICS TCP/IP. These are the
calls issued by the CICS Listener. Your client and server call sequences must be
prepared to work with this sequence. These calls are documented in “2. Writing
your own concurrent server”, where the Listener calls in Figure 76 are explained.

Child server call sequence
Table 5 explains the functions of each of the calls listed in Figure 76 on page 95.

Table 5. Calls for the server application

(7) EXEC CICS
RETRIEVE

This retrieves the data passed by the EXEC CICS START command
in the concurrent server program. This data includes the socket
descriptor and the concurrent server client ID as well as optional
additional data from the client.

(8) TAKESOCKET This acquires the newly created socket from the concurrent server.
The TAKESOCKET parameters must specify the socket descriptor to
be acquired and the client ID of the concurrent server. This
information was obtained by the EXEC CICS RETRIEVE command.
Note: If TAKESOCKET is the first call, it issues an implicit INITAPI
with default values.

(9) READ/WRITE The conversation with the client continues until complete.

(10) CLOSE Terminates the connection and releases the socket resources when
finished.

2. Writing your own concurrent server
The overall setup is the same as the first scenario, but your concurrent server
application performs many of the functions performed by the Listener. Obviously,
the client and child server applications have the same functions.

Concurrent server call sequence
Table 6 explains the functions of each of the steps listed in Figure 76 on page 95.

Table 6. Calls for the concurrent server application

(11) INITAPI Connects the application to TCP/IP, as in Table 4.

(12) SOCKET This obtains a socket, as in Table 4.

96 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 6. Calls for the concurrent server application (continued)

(13) BIND Once a socket has been obtained, a concurrent server uses this call
to attach itself to a specific port at a specific address so that the
clients can connect to it. The socket descriptor and a local address
and port number are passed as arguments.

On successful return of the BIND call, the socket is bound to a port
at the local address, but not (yet) to any remote address.

(14) LISTEN After binding an address to a socket, a concurrent server uses the
LISTEN call to indicate its readiness to accept connections from
clients. LISTEN tells TCP/IP that all incoming connection requests
should be held in a queue until the concurrent server can deal with
them. The BACKLOG parameter in this call sets the maximum
queue size.

(15) GETCLIENTID This command returns the identifiers (MVS address space name and
subtask name) by which the concurrent server is known by TCP/IP.
This information will be needed by the EXEC CICS START call.

(16) SELECTEX The SELECT call monitors activity on a set of sockets. In this case,
it is used to interrogate the queue (created by the LISTEN call) for
connections. It will return when an incoming CONNECT call is
received or when LCATECB was posted because immediate
termination was detected, or else will time out after an interval
specified by one of the SELECT parameters.

(17) ACCEPT The concurrent server uses this call to accept the first incoming
connection request in the queue. ACCEPT obtains a new socket
descriptor with the same properties as the original. The original
socket remains available to accept more connection requests. The
new socket is associated with the client that initiated the connection.

(18) READ A READ is not issued if the FORMAT parameter is ENHANCED and
MSGLENTH is 0. If FORMAT is ENHANCED, MSGLENTH is not 0,
and PEEKDATA is YES, the Listener peeks the number of bytes
specified by MSGLENTH. If FORMAT is STANDARD, the Listener
processes the client data as in earlier releases.

(19) CICS INQ This checks that the SERV transaction is defined to CICS (else the
TRANSIDERR exceptional condition is raised), and, if so, that its
status is ENABLED. If either check fails, the Listener does not
attempt to start the SERV transaction.

(20) GIVESOCKET This makes the socket obtained by the ACCEPT call available to a
child server program.

(21) CICS START This initiates the CICS transaction for the child server application
and passes the ID of the concurrent server, obtained with
GETCLIENTID, to the server. For example, in “Listener output
format” on page 105, the parameters LSTN-NAME and LSTN-SUBNAME
define the Listener.

(22) SELECT 9 Again, the SELECT call is used to monitor TCP/IP activity. This time,
SELECT returns when the child server issues a TAKESOCKET call.

(23) CLOSE This releases the new socket to avoid conflicts with the child server.

Passing sockets
In CICS, a socket belongs to a CICS task. Therefore, sockets can be passed
between programs within the same task by passing the descriptor number.

9. This SELECT is the same as the SELECT call in Step 16. They are shown as two calls to clarify the functions being performed.

Chapter 6. Application programming guide 97

However, passing a socket between CICS tasks does require a
GIVESOCKET/TAKESOCKET sequence of calls.

3. The iterative server CICS TCP/IP application
Figure 77 shows the sequence of socket calls involved in a simple client-iterative
server setup.

The setup with an iterative server is much simpler than the previous cases with
concurrent servers.

Iterative server use of sockets
The iterative server need only obtain 2 socket descriptors. The iterative server
makes the following calls:

1. As with the concurrent servers, SOCKET, BIND, and LISTEN calls are made to
inform TCP/IP that the server is ready for incoming requests, and is listening on
socket 0.

2. The SELECT call then returns when a connection request is received. This
prompts the issuing of an ACCEPT call.

3. The ACCEPT call obtains a new socket (1). Socket 1 is used to handle the
transaction. Once this completed, socket 1 closes.

4. Control returns to the SELECT call, which then waits for the next connection
request.

The disadvantage of an iterative server is that it remains blocked for the duration of
a transaction, as described in Chapter 1, “Introduction to CICS TCP/IP” on page 1.

4. The client CICS TCP/IP application
Figure 78 on page 99 shows the sequence of calls in a CICS client-remote server
setup. The calls are similar to the previous examples.

Figure 77. Sequence of socket calls with an iterative server

98 z/OS V1R4.0 CS: IP CICS Sockets Guide

Figure 78 shows that the server can be on any processor and can run under any
operating system, provided that the combined software-hardware configuration
supports a TCP/IP server.

For simplicity, the figure shows an iterative server. A concurrent server would need
a child server in the remote processor and an adjustment to the calls according to
the model in Figure 76 on page 95.

A CICS server issues a READ call to read the client’s first message, which contains
the CICS transaction name of the required child server. When the server is in a
non-CICS system, application design must specify how the first message from the
CICS client indicates the service required (in Figure 78, the first message is sent by
a WRITE call).

If the server is a concurrent server, this indication is typically the name of the child
server. If the server is iterative, as in Figure 78, and all client calls require the same
service, this indication might not be necessary.

Socket addresses
Socket addresses are defined by specifying the address family and the address of
the socket in the internet. In CICS TCP/IP, the address is specified by the IP
address and port number of the socket.

Address family (domain)
CICS TCP/IP supports only one TCP/IP addressing family (or domain, as it is called
in the UNIX system). This is the internet domain, denoted by AF_INET in C. Many
of the socket calls require you to define the domain as one of their parameters.

Remote Server

Another operating system MVS

TCP/IP
implementation
with socket
interface

TCP/IP
Services

CICS address space

Sockets
for CICS

Client

Iterative server

INITAPI

SOCKET INITAPI

BIND SOCKET

LISTEN CONNECT

ACCEPT

READ/WRITE

READ/WRITE

CLOSE CLOSE

CICS Client

Figure 78. Sequence of socket calls between a CICS client and a remote iterative server

Chapter 6. Application programming guide 99

A socket address is defined by the IP address of the socket and the port number
allocated to the socket.

IP addresses
IP addresses are allocated to each TCP/IP Services address on a TCP/IP internet.
Each address is a unique 32-bit quantity defining the host’s network and the
particular host. A host can have more than one IP address if it is connected to more
than one network (a so-called multihomed host).

Ports
A host can maintain several TCP/IP connections at once. One or more applications
using TCP/IP on the same host are identified by a port number. The port number is
an additional qualifier used by the system software to get data to the correct
application. Port numbers are 16-bit integers; some numbers are reserved for
particular applications and are called well-known ports (for example, 23 is for
TELNET).

Address structures
A socket address in an IP addressing family comprises four fields: the address
family, an IP address, a port, and a character array (zeros), set as follows:

v The family field is set to AF_INET in C, or to 2 in other languages.

v The port field is the port used by the application, in network byte order (which is
explained on page 101).

v The address field is the IP address of the network interface used by the
application. It is also in network byte order.

v The character array field should always be set to all zeros.

For COBOL and assembler language programs
The address structure of an internet socket address should be defined as follows:

Parameter Assembler COBOL

NAME
STRUCTURE:
FAMILY H PIC 9(4)

BINARY
PORT H PIC 9(4)

BINARY
ADDRESS F PIC 9(8)

BINARY
ZEROS XL8 PIC X(8)

For C programs
The structure of an internet socket address is defined by the sockaddr_in structure,
which is found in the IN.H header file. The format of this structure is shown in
Table 11 on page 114.

MVS address spaces
Figure 79 on page 101 shows the relationship between TCP/IP and CICS in terms
of MVS address spaces.

100 z/OS V1R4.0 CS: IP CICS Sockets Guide

Within each CICS region, server and client processes will be allocated subtask
numbers. TCP/IP treats each CICS region together with its application programs as
a client application. Because of this, the address space and subtask of each CICS
TCP/IP application is called its CLIENTID. This applies to CICS TCP/IP servers as
well as to clients.

A single task can support up to 2000 sockets. However, the maximum number of
sockets that the TCP/IP address space is capable of supporting is determined by
the value of MAXSOCKETS. Therefore, using multiple tasks, a single CICS region
can support a number of sockets up to the setting of MAXSOCKETS, which has a
maximum possible value of 16 777 215.

MAXFILEPROC limits the number of sockets per process. Since CICS is
considered a process, MAXFILEPROC can limit the number of files allocated for the
CICS region. Ensure that MAXFILEPROC is set to accommodate the total number
of sockets used by all tasks running in the region.

The structure of CLIENTID is shown in Table 7. With CICS TCP/IP, the domain is
always AF_INET, so the name (that is, address space) and subtask are the items of
interest.

Table 7. CLIENTID structures

C structure COBOL structure

struct clientid {
int domain;
char name[8];
char subtaskname[8];
char reserved[20];

};

CLIENTID STRUCTURE:
Domain PIC 9(8) BINARY
Name PIC X(8)
Task PIC X(8)
Reserved PIC X(20)

Network byte order
Ports and addresses are specified using the TCP/IP network byte ordering
convention, which is known as big endian.

In a big endian system, the most significant byte comes first. By contrast, in a little
endian system, the least significant byte comes first. MVS uses the big endian
convention; because this is the same as the network convention, CICS TCP/IP
applications do not need to use any conversion routines, such as htonl, htons,
ntohl, and ntohs.

Figure 79. MVS address spaces

Chapter 6. Application programming guide 101

Note: The socket interface does not handle differences in data byte ordering within
application data. Sockets application writers must handle these differences
themselves.

GETCLIENTID, GIVESOCKET, and TAKESOCKET
The socket calls GETCLIENTID, GIVESOCKET, and TAKESOCKET are unique to
IBM’s implementation of the socket interface. In CICS TCP/IP, they are used with
the EXEC CICS START and EXEC CICS RETRIEVE commands to make a socket
available to a new process. This is shown in Figure 80.

Figure 80 shows the calls used to make a Listener socket available to a child server
process. It shows the following steps:

1. The Listener calls GETCLIENTID. This returns the Listener’s own CLIENTID
(CLIENTID-L), which comprises the MVS address space name and subtask
identifier of the Listener. The Listener transaction needs access to its own
CLIENTID for step 3.

2. The Listener calls GIVESOCKET, specifying a socket descriptor and the
CLIENTID of the child server.

If the Listener and child server processes are in the same CICS region (and so
in the same address space), the MVS address space identifier in CLIENTID can
be set to blanks. This means that the Listener’s address space is also the
child’s address space.

If the Listener and child server processes are in different CICS regions, enter
the new address space and subtask.

In the CLIENTID structure, the supplied Listener sets the address space name
and subtask identifier to blanks. This makes the socket available to a
TAKESOCKET command from any task in the same MVS image, but only the
child server receives the socket descriptor number, so the exposure is minimal.
For total integrity, the child server’s subtask identifier should be entered.

Listener
(with clientid CLIENTID-L)

Child server
(with clientid CLIENTID-CS)

1. Call GETCLIENTID
-returns CLIENTID-L

2. Call GIVESOCKET
-specifies CLIENTID-CS

3. Call EXEC CICS START
-specifies CLIENTID-L

4. Call EXEC CICS RETRIEVE
returns CLIENTID-L in the
INTO parameter

5. Call TAKESOCKET
specifies CLIENTID-L

Figure 80. Transfer of CLIENTID information

102 z/OS V1R4.0 CS: IP CICS Sockets Guide

3. The Listener performs an EXEC CICS START. In the FROM parameter, the
CLIENTID-L, obtained by the previous GETCLIENTID, is specified. The Listener
is telling the new child server where it will get its socket from in step 5.

4. The child server performs an EXEC CICS RETRIEVE. In the INTO parameter,
CLIENTID-L is retrieved.

5. The child server calls TAKESOCKET, specifying CLIENTID-L as the process from
which it wants to take a socket.

The Listener
In a CICS system based on SNA terminals, the CICS terminal management
modules perform the functions of a concurrent server. Because the TCP/IP interface
does not use CICS terminal management, CICS TCP/IP provides these functions in
the form of a CICS application transaction, the Listener. The CICS transaction ID of
the IBM distributed listener is CSKL. This transaction is defined at installation to
execute the EZACIC02 program and is to be further referenced as the Listener.
This transaction ID may be configured to a transaction ID suitable for the users
requirements through the use of the EZACICD macro or the EZAO CICS
transaction.

The Listener performs the following functions:

1. It issues appropriate TCP/IP calls to “listen” on the port specified in the
Configuration file and waits for incoming connection requests issued by clients.
The port number must be reserved in the hlq.TCPIP.PROFILE.

2. It registers and deregisters with WLM for load balancing in a sysplex
environment.

v WLM registration is performed immediately after the Listener socket is
activated. It is performed by invoking EZACIC12, which checks the
Configuration File record for the presense of WLM Group Names and
performs registration for those groups specified.

v WLM deregistration is performed for any of the following conditions:

– Request of a Listener Quiesce, by either an EZAO STOP or a CEMT
PERFORM SHUTDOWN command. In this case, deregistration is done
when the listening socket is closed.

– Request for an Immediate Shutdown using an EZAO STOP. In this case,
deregistration is done when the Listener detects the request.

– Abnormal termination of the Listener:

- Fatal error related to the listening socket.

- Abend of the subtask.

- CICS immediate termination.

- CICS Abend.

In these cases, deregistration is done when the Listener detects the error.

3. When an incoming connection request arrives, the Listener accepts it and
obtains a new socket to pass to the CICS child server application program.

4. It starts the CICS child server transaction based on information in the first
message on the new connection. The format of this information is given in
“Listener input format” on page 104.

5. It waits for the child server transaction to take the new socket and then issues
the close call. When this occurs, the receiving application assumes ownership of
the socket and the Listener has no more interest in it.

Chapter 6. Application programming guide 103

|
|
|
|
|
|
|
|
|

The Listener program is written so that some of this activity goes on in parallel. For
example, while the program is waiting for a new server to accept a new socket, it
listens for more incoming connections. The program can be in the process of
starting 49 child servers simultaneously. The starting process begins when the
Listener accepts the connection and ends when the Listener closes the socket it
has given to the child server.

Listener input format
The Listener requires the following input format from the client in its first
transmission. The client should then wait for a response before sending any
subsequent transmissions. Input can be in uppercase or lowercase. The commas
are required.

MM tran , , ,
client-in-data IC hhmmss

ic
TD
td

MN

tran
The CICS transaction ID (in uppercase) that the Listener is going to start. This
field can be one to four characters.

client-in-data
Optional. Application data, used by the optional security exit 10 or the server
transaction. The maximum length of this field is a 40-byte character (35 bytes,
plus one byte filler and 4 bytes for startup type).

IC/TD
Optional. Startup type that can be either IC for CICS interval control or TD for
CICS transient data. These can also be entered in lowercase (ic or td). If this
field is left blank, startup is immediate.

hhmmss
Optional. Hours, minutes, and seconds for interval time if the transaction is
started using interval control. All six digits must be given.

Note: TD ignores the timefield.

Examples
The following are examples of client input and the Listener processing that results
from them. The data fields referenced can be found in “Listener output format” on
page 105. Note that parameters are separated by commas.

Example Listener response

TRN1,userdataishere It starts the CICS transaction TRN1 using task control, and
passes to it the data userdataishere in the field
CLIENT-IN-DATA.

TRN2,,IC,000003 It starts the CICS transaction TRN2 using interval control,
without user data. There is a 3-second delay between the
initiation request from the Listener and the transaction startup
in CICS.

10. See “Writing your own security/transaction link module for the Listener” on page 107

104 z/OS V1R4.0 CS: IP CICS Sockets Guide

Example Listener response

TRN3,userdataishere,TD It writes a message to the transient data queue named TRN3
in the format described by the structure TCPSOCKET-PARM,
described in “Listener output format”. The data contained in
userdataishere is passed to the field CLIENT-IN-DATA. This
queue must be an intrapartition queue with trigger-level set to
1. It causes the initiation of transaction TRN3 if it is not
already active. This transaction should be written to read the
transient data queue and process requests until the queue is
empty.

This mechanism is provided for those server transactions that
are used very frequently and for which the overhead of
initiating a separate CICS transaction for each server request
could be a performance concern.

TRN3,,TD It causes data to be placed on transient data queue TRN3,
which in turn causes the start or continued processing of the
CICS transaction TRN3, as described in the TRN3 previous
example. There is no user data passed.

TRN4 It starts the CICS transaction TRN4 using task control. There
is no user data passed to the new transaction.

Listener output format
There are two different formats for the Listener output, one for child server tasks
started through a standard Listener and one for child server tasks started through
the enhanced Listener.

Table 8 shows the format of the Listener output data area passed to the child server
through a standard Listener.

Table 8. Listener output format - Standard Listener

Description Format Value

Socket descriptor Fullword binary The socket descriptor to be used by the child
server in the TAKESOCKET command

MVS address space
identifier

8-byte character Name of the Listener’s address space

TCP/IP task identifier 8-byte character Listener’s task identifier

Data area 36-byte character
(35-byte character,
plus 1 byte for
fullword alignment)

Client-in-data from Listener input received
from the client

Socket address
structure

Sockaddr-in structure
containing the next 4
fields

Client’s sockaddr-in structure

TCP/IP addressing
family

Halfword binary Must be 2 (AF_INET)

Port descriptor Halfword binary The client’s port number

32-bit IP address Fullword binary IP address of the client’s host

Reserved Doubleword Reserved for IBM use

For a standard Listener, the following COBOL definition is used:

Chapter 6. Application programming guide 105

||
|
|
|

|
|

01 TCPSOCKET-PARM.
05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
05 LSTN-NAME PIC X(8).
05 LSTN-SUBNAME PIC X(8).
05 CLIENT-IN-DATA PIC X(35).
05 FILLER PIC X(1).
05 SOCKADDR-IN-PARM.

15 SIN-FAMILY PIC 9(4) COMP.
15 SIN-PORT PIC 9(4) COMP.
15 SIN-ADDRESS PIC 9(8) COMP.
15 SIN-ZERO PIC X(8).

Table 9 shows the format of the Listener output data area passed to the child server
through the enhanced Listener.

Note: With the enhanced Listener, no client-in-data is extracted from the initial
client data. The child server program must either read the initial client data
itself (if PEEKDATA is YES) or obtain it from DATA-AREA-2 (if PEEKDATA is
NO). If a Listener is converted from a standard Listener to an enhanced
Listener, its corresponding child server applications must be changed to
handle the larger transaction initial message (TIM) by specifying a large
enough length on the EXEC CICS RETRIEVE command or on the EXEC
CICS READQ TD command. Otherwise, the command fails with a
LENGERR response and the child server task could abend.

Table 9. Listener output format - Enhanced Listener

Description Format Value

Socket descriptor Fullword binary The socket descriptor to be used by the child
server in the TAKESOCKET command

MVS address space
identifier

8-byte character Name of the Listener’s address space

TCP/IP task identifier 8-byte character Listener’s task identifier

Data area 35-byte character Either the client-in-data from Listener (if
FORMAT is STANDARD) or the first 35 bytes
of data read by the Listener (if FORMAT is
ENHANCED)

Filler 1-byte character Unused byte for fullword alignment

Socket address
structure

Sockaddr-in structure
containing the next 4
fields

Client’s sockaddr-in structure

TCP/IP addressing
family

Halfword binary Must be 2 (AF_INET)

Port descriptor Halfword binary The client’s port number

32-bit IP address Fullword binary IP address of the client’s host

Reserved Doubleword Reserved for IBM use

Reserved 20 fullwords Reserved for future use

Data length Halfword binary The length of the data received from the
client. If PEEKDATA=YES was configured,
data length is 0 with no data in data area-2.

Data area-2 Length determined by
previous field

The data received from the client starting at
position 1

For the enhanced Listener, the following COBOL definition is used:

106 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|

01 TCPSOCKET-PARM.
05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
05 LSTN-NAME PIC X(8).
05 LSTN-SUBNAME PIC X(8).
05 CLIENT-IN-DATA PIC X(35).
05 FILLER PIC X(1).
05 SOCKADDR-IN-PARM.

15 SIN-FAMILY PIC 9(4) COMP.
15 SIN-PORT PIC 9(4) COMP.
15 SIN-ADDRESS PIC 9(8) COMP.
15 SIN-ZERO PIC X(8).

05 FILLER PIC X(80).
05 DATA-AREA-2-LEN PIC 9(4) COMP.
05 DATA-AREA-2 PIC X(xxx).

where xxx is at least equal to the largest MSGLEN parameter for the Listeners
that can start this application.

Writing your own security/transaction link module for the Listener
The Listener process provides an exit point for those users who want to write and
include a module that performs the following:

v Check to indicate whether the expanded security/transaction input format is used

v Security check before a CICS transaction is initiated

The exit point is implemented so that if a module is not provided, all valid
transactions are initiated.

If you write a security/transaction module, you can name it anything you want, as
long as you define it in the configuration data set. (In previous releases, you
needed to name the module EZACICSE; you can still use that module with this
release). You can write this program in COBOL, PL/I, or assembler language and
must provide an appropriate entry in the CICS program processing table (PPT).

Specifying in EZAC: Specify the name of the security/transaction module in the
SECexit field in Alter or Define. If you do not name the
module, CICS will assume you do not have one. See
Figure 52 on page 64 for more information.

Just before the task creation process, the Listener invokes the security/transaction
module by a conditional CICS LINK passing a COMMAREA. The Listener passes a
data area to the module that contains information for the module to use for security
checking and a 1-byte switch. Your security/transaction module should perform a
security check and set the switch accordingly.

When the security/transaction module returns, the Listener checks the state of the
switch and initiates the transaction if the switch indicates security clearance. The
module can perform any function that is valid in the CICS environment. Excessive
processing, however, could cause performance degradation.

A field is supplied to indicate if the expanded security/transaction input format is
used. If used, fields also exist for the Listener’s IP address and port number, a data
length field, and a second data area (up to MSGLENTH in length). Table 10 shows
the data area used by the security/transaction module.

Table 10. Security/transaction exit data

Description Format Value

CICS transaction
identifier

4-byte character CICS transaction requested by the client or
supplied by the CSTRANID parameter.

Chapter 6. Application programming guide 107

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 10. Security/transaction exit data (continued)

Description Format Value

Data area-1 35-byte character If the FORMAT parameter is STANDARD,
this contains the 35-byte application data
extracted from the initial client data.
Otherwise, this contains up to the first 35
bytes of data sent by the client (MSGLENTH
determines the limit).

Security/transaction
exit data level

1-byte character Indicates whether or not this data area is in
the expanded format:
1 Expanded format
0 Not expanded

Reserved 4-byte character Reserved for IBM use

Action 2-byte character Method of starting the task:
IC Interval control
KC Task control
TD Transient data

Interval control time 6-byte character Interval requested for IC start.

Has the form hhmmss.

Address family Halfword binary Network address family. A value of 2 must be
set.

Client’s port Halfword binary The port number of the requester’s port.

Client’s IP address Fullword binary The IP address of the requester’s host.

Switch-1 1-byte character Switch:
1 Permit the transaction
Not 1 Prohibit the transaction

Switch-2 1-byte character Switch:
1 Listener sends message to client.
Not 1 Security/transaction exit program

sends message to client.

Terminal identification 4-byte character Return binary zeros if no CICS terminal is
associated with the new task.

Otherwise, return the CICS terminal identifier
associated with the new task.

Socket descriptor Halfword binary Current socket descriptor.

User ID 8-byte character In CICS V4R1 and higher, a user ID value
can be returned and associated with the new
task. This is mutually exclusive from terminal
identification.

Listener’s IP address Fullword binary The local IP address associated with this
new TCP/IP connection.

Listener’s port Halfword binary The Listener’s port number.

Reserved 20 fullwords Reserved for future use.

Data length Halfword binary The length of the data received from the
client.

Data area-2 Length determined by
the previous field

The data received from the client starting at
position 1. If this is the enhanced Listener,
the first 35 bytes are the same as data
area-1.

108 z/OS V1R4.0 CS: IP CICS Sockets Guide

Data conversion routines
CICS uses the EBCDIC data format, whereas TCP/IP networks use ASCII. When
moving data between CICS and the TCP/IP network, your application programs
must initiate the necessary data conversion. Sockets for CICS programs can use
routines provided by TCP/IP Services for:

v Converting data from EBCDIC to ASCII and back, when sending and receiving
data to and from the TCP/IP network, with the SEND, RECEIVE, READ, and
WRITE calls.

v Converting between bit arrays and character strings when using the SELECT
call.

For details of these routines, refer to EZACIC04, EZACIC05, and EZACIC06 in
Chapter 8, “Sockets extended application programming interface (API)” on page
143.

Chapter 6. Application programming guide 109

110 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 7. C language application programming

This chapter describes the C language API provided by CICS TCP/IP.

The chapter is organized under following headings:

v “C socket library” lists the required header files and explains how to make them
available to your programs.

v “C socket compilation” shows how to compile a C Socket program that contains
calls to Sockets for CICS.

v “Structures used in socket calls” on page 114 lists data structures used in C
language socket calls.

v “The ERRNO variable” on page 115 describes the use of a global variable used
by the socket system to report errors.

v “C socket calls” on page 115 describes the syntax and semantics of the socket
calls and explains what they do and how they work together in the context of an
application.

C socket library
To use the socket routines described in this chapter, you must include these header
files:

fnctl.h manifest.h (non-reentrant programs only)
if.h cmanifes.h (reentrant programs only)
in.h ezacichd.h (non-reentrant programs only)
inet.h errno.h (reentrant programs only)
ioctl.h netdb.h
bsdtypes.h socket.h
rtrouteh.h uio.h

The files are in the hlq.SEZACMAC data set, which must be concatenated to the
SYSLIB DD in the compilation JCL (as described in Step �4� of “C socket
compilation”). These files carry a .h extension in this text to distinguish them as
header files.

In the IBM implementation, you must include either manifest.h (if the program is
non-reentrant) or cmanifes.h (if the program is reentrant) to remap the function long
name to eight-character names. To reference manifest.h or cmanifes.h, you need to
include one of the following statements as the first #include at the beginning of
each program:

C socket compilation
To compile a C Socket program that contains calls to CICS TCP/IP, you must
change the standard procedure for C Socket compilation provided with CICS.
Figure 81 on page 113 shows a sample job for the compilation of a C Socket
program that contains calls to CICS TCP/IP. It includes the following modifications:

v �1�The prototyping statement is required for CICS.

Non-reentrant programs:
#include <manifest.h>

Reentrant programs:
#include <cmanifes.h>

© Copyright IBM Corp. 1994, 2002 111

|
|
|
|
|
|
|

|

v �2� In the C step (running the C Socket compiler) you must concatenate the
hlq.SEZACMAC data set to the SYSLIB DD.

v �3� In the PLKED step you must concatenate the hlq.SEZARNT1 data set to the
SYSLIB DD if and only if the program is to be compiled as reentrant (that is, with
the RENT option).

v �4� In the LKED step you must concatenate the hlq.SEZATCP and
hlq.SEZACMTX data sets to the SYSLIB DD.

v �5� Also in the LKED step, you must add an INCLUDE for either module
EZACIC07 (if the program is non-reentrant) or module EZACIC17 (if the program
is reentrant).

Notes:

1. Furthermore, regarding Step 5 above, Sockets for CICS application programs
must include either EZACIC07 (if the program is non-reentrant) or EZACIC17 (if
the program is reentrant) instead of CMIUCSOC, which is included in most C
programs.

2. You must specify the compiler option of NORENT (non-reentrant) when
including the module EZACIC07 and <ezacichd.h>.

3. You must specify the compiler option of RENT (reentrant) when including the
module EZACIC17 and <errno.h>.

4. For more information about compiling and linking, see z/OS C/C++ User’s Guide
and z/OS Communications Server: IP Application Programming Interface Guide.

112 z/OS V1R4.0 CS: IP CICS Sockets Guide

//CICSRS1C JOB (999,POK),’CICSRS1’,NOTIFY=CICSRS1,
// CLASS=A,MSGCLASS=T,TIME=1439,
// REGION=5000K,MSGLEVEL=(1,1)
//DFHEITDL PROC SUFFIX=1$,
// INDEX=’CICS410’,
// INDEX2=’CICS410’,
//CPARM=’DEFINE(MVS)’, �1�

..........
//TRN EXEC PGM=DFHEDP&SUFFIX,
// REGION=®

..........
//*
//C EXEC PGM=EDCCOMP,REGION=®,
// COND=(7,LT,TRN),
// PARM=(,’&CPARM’)
//STEPLIB DD DSN=&VSCCHD..&CVER..SEDCLINK,DISP=SHR
// DD DSN=&COMHD..&COMVER..SIBMLINK,DISP=SHR
// DD DSN=&VSCCHD..&CVER..SEDCCOMP,DISP=SHR
//SYSMSGS DD DSN=&VSCCHD..&CVER..SEDCMSGS(EDCMSGE),DISP=SHR
//SYSLIB DD DSN=&VSCCHD..&CVER..SEDCHDRS,DISP=SHR
// DD DSN=&INDEX..SDFHC370,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=hlq.SEZACMAC,DISP=SHR
�2�
//SYSLIN DD DSN=&&LOAD,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSPRINT DD SYSOUT=&OUTC
//SYSCPRT DD SYSOUT=&OUTC
//SYSTERM DD DUMMY
//SYSUT1 DD DSN=&&SYSUT1,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80

..........
//SYSUT10 DD DUMMY
//SYSIN DD DSN=*.TRN.SYSPUNCH,DISP=(OLD,DELETE)
//*
//COPYLINK EXEC PGM=IEBGENER,COND=((7,LT,C),(7,LT,TRN))

..........
//*
//PLKED EXEC PGM=EDCPRLK,COND=((7,LT,C),(7,LT,TRN)), �3�
// REGION=®,PARM=’&PPARM’
//SYSLIB DD DSN=hlq.SEZARNT1 (reentrant programs only)

..........
//*
//LKED EXEC PGM=IEWL,REGION=®,
// PARM=’&LNKPARM’,
// COND=((7,LT,C),(7,LT,PLKED),(7,LT,TRN))
//SYSLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR
// DD DSN=&VSCCHD..&CVER..SEDCBASE,DISP=SHR
// DD DSN=&COMHD..&COMVER..SIBMBASE,DISP=SHR
// DD DSN=hlq.SEZATCP,DISP=SHR
�4�
// DD DSN=hlq.SEZACMTX,DISP=SHR
//SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
// DD DSN=*.COPYLINK.SYSUT2,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=CICSRS2.CICS410.PGMLIB,DISP=SHR
//*RESLIB DD DSN=&IMSIND..RESLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1L,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80

Figure 81. Modified JCL for C socket compilation (Part 1 of 2)

Chapter 7. C language application programming 113

Structures used in socket calls
The parameter lists for some C language socket calls include a pointer to a data
structure defined by a C structure. The structures are defined in the header files
in.h, socket.h, and if.h. Table 11 shows the structures used by the calls described in
this chapter.

Table 11. C structures

C structure Format

clientid

Used in many calls

struct clientid {
int domain;
char name[8];
char subtaskname[8];
char reserved[20];

};

ifconf

Used in the ioctl()
call only

struct ifconf {
int ifc_len;
union {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;

};

ifreq

Used in the ioctl()
call only

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ];
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;
} ifr_ifru;

};

linger

Used in the
get/setsockopt()
calls only

struct linger {
int l_onoff;
int l_linger;

};

//SYSPRINT DD SYSOUT=&OUTC
// PEND
//APPLPROG EXEC DFHEITDL
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS1.JCL.DATA(SICUCCLD)
//LKED.SYSIN DD * �5�
INCLUDE SYSLIB(EZACIC07) (non-reentrant programs only)
INCLUDE SYSLIB(EZACIC17) (reentrant programs only)

NAME SICUCCLD(R)
/*

Figure 81. Modified JCL for C socket compilation (Part 2 of 2)

114 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 11. C structures (continued)

C structure Format

sockaddr_in

Used in many calls

struct in_addr
{

unsigned long s_addr;
};
struct sockaddr_in {

short sin_family;
ushort sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

timeval

Used in the select()
call only

struct timeval {
long tv_sec;
long tv_usec;

};

The ERRNO variable
The global variable errno is used by the socket system calls to report errors. If a
socket call results in an error, the call returns a negative value, and an error value
is set in errno. To be able to access these values, you must add one of the
following include statements:
Non-reentrant programs:
#include <ezacichd.h>

Reentrant programs:
#include <errno.h>

Notes:

1. Do not use tcperror().

2. A copy of EZACICHD.H can be found in dataset hlq.SEZAINST.

C socket calls
This section contains guidance for each C socket call supported by CICS TCP/IP.

For syntax, parameters, and other reference information for each C socket call,
refer to z/OS Communications Server: IP Programmer’s Reference.

accept()
A server issues the accept() call to accept a connection request from a client. The
call uses a socket already created with a socket() call and marked by a listen() call.

An accept() call
1. Accepts the first connection on its queue of pending connections.
2. Creates a new socket with the same properties as the socket used in the call.
3. Returns the new socket descriptor to the server.

The new socket cannot be used to accept new connections, but is used by the
client for application purposes. The server issues a givesocket() call and a CICS
START command to enable a child server to communicate with the client for
application purposes. The original socket remains available to the server to accept
more connection requests.

Chapter 7. C language application programming 115

|

The accept() call optionally saves the connection requester’s address for use by the
server.

Notes:

1. If the queue has no pending connection requests, accept() blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling ioctl().

2. accept() calls are the only way to screen clients. The application cannot
predetermine clients from which it will accept connections, but it can close a
connection immediately after discovering the identity of the client.

3. The select() call checks a socket for incoming connection requests.

Format

Parameters
s The s parameter is a stream socket descriptor that has already been

created with the socket() call. It is usually bound to an address with the
bind() call. The listen() call marks the socket as one that accepts
connections and allocates a queue to hold pending connection requests.
The listen() call allows the caller to place an upper boundary on the size of
the queue.

name The pointer to a sockaddr structure into which the address of a client
requesting a connection is placed on completion of the accept() call. If the
server application does not need the client address, set the name
parameter to the NULL pointer before making the accept() call.

The format of the name buffer is expected to be sockaddr, as defined in the
header file in.h. The format of the structure is shown in Table 11 on
page 114.

namelen
The size, in bytes, of the buffer pointed to by name.

Return values
A nonnegative socket descriptor indicates success; the value −1 indicates an error.
To see which error has occurred, check the errno global variable, which will be set
to a return code. Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using addr and addrlen would result in an attempt to copy the address into
a portion of the caller’s address space into which information cannot be
written.

EINVAL
Listen() was not called for socket s.

ENOBUFS
Insufficient buffer space is available to create the new socket.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
int accept(int s, struct sockaddr *name, int *namelen)

116 z/OS V1R4.0 CS: IP CICS Sockets Guide

EOPNOTSUPP
The s parameter is not of type SOCK_STREAM.

EWOULDBLOCK
The socket s is in nonblocking mode, and no connections are in the queue.

bind()
The bind() call binds a unique local port to an existing socket. Note that, on
successful completion of a socket() call, the new socket descriptor does not have
an associated port.

The bind() call can specify the required port or let the system choose. A Listener
application should always bind to the same well-known port, so that clients can
know which PORT to use.

Format

Parameters
s The socket descriptor returned by a previous socket() call.

name

The pointer to a sockaddr structure containing the name that is to be bound
to s. The format of the name buffer is expected to be sockaddr, as defined
in the header file in.h. The format of the structure is shown in Table 11 on
page 114.

The sin_family field must be set to AF_INET.

The sin_port field is set to the port to which the application must bind. It
must be specified in network byte order. If sin_port is set to 0, the caller
expects the system to assign an available port. The application can call
getsockname() to discover the port number assigned.

The in_addr.s_addr field is set to the IP address and must be specified in
network byte order. On hosts with more than one network interface (called
multihomed hosts), you can select the interface to which it is to bind.
Subsequently, only TCP connection requests from this interface are routed
to the application.

If you set this field to the constant INADDR_ANY, as defined in in.h, the
socket is bound to all network interfaces on the host. By leaving the
address unspecified with INADDR_ANY, the server can accept all TCP
connection requests made for its port, regardless of the network interface
on which the requests arrived. Set INADDR_ANY for servers that offer a
service to multiple networks.

The sin_zero field is not used and must be set to all zeros.

namelen
The size, in bytes, of the buffer pointed to by name.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
int bind(int s, struct sockaddr *name, int namelen)

Chapter 7. C language application programming 117

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EADDRINUSE
The address is already in use. See the SO_REUSEADDR option described
under “getsockopt(), setsockopt()” on page 125 for more information.

EADDRNOTAVAIL
The address specified is not valid on this host. For example, the IP address
does not specify a valid network interface.

EAFNOSUPPORT
The address family is not supported (it is not AF_INET).

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using name and namelen would result in an attempt to copy the address
into a nonwritable portion of the caller’s address space.

EINVAL
The socket is already bound to an address. An example is trying to bind a
name to a socket that is in the connected state. This value is also returned
if namelen is not the expected length.

close()
A close() call shuts down a socket and frees all resources allocated to the socket. If
the socket refers to an open TCP connection, the connection is closed. If a stream
socket is closed when input data is queued, the TCP connection is reset rather than
being cleanly closed.

Format

Parameter
s The descriptor of the socket to be closed.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:
EBADF

The s parameter is not a valid socket descriptor.

connect()
A connect() call attempts to establish a connection between a local socket and a
remote socket. For a stream socket, the call performs two tasks. First, it completes
the binding necessary for a stream socket in case it has not been previously bound
by a bind() call. Second, it attempts to make a connection to another socket.

The connect() call on a stream socket is used by a client application to establish a
connection to a server. To be able to accept a connection with an accept() call, the

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
int close(int s)

118 z/OS V1R4.0 CS: IP CICS Sockets Guide

server must have a passive open pending, which means it must have successfully
called bind() and listen() before the client issues connect().

If the socket is in blocking mode, the connect() call blocks the caller until the
connection is set up, or until an error is received. If the socket is in nonblocking
mode and no errors occurred, the return codes indicate that the connection can be
initiated. The caller can test the completion of the connection setup by calling
select() and testing for the ability to write to the socket.

Stream sockets can call connect() once only.

Format

Parameters
s The socket descriptor of the socket that is going to be used as the local

endpoint of the connection.

name The pointer to a socket address structure containing the destination socket
address to which a connection is requested.

The format of the name buffer is expected to be sockaddr, as defined in the
header file in.h. The format of the structure is shown in Table 11 on
page 114.

The sin_family field must be set to AF_INET. The sin_port field is set to the
port to which the server is bound. It must be specified in network byte
order. The sin_zero field is not used and must be set to all zeros.

namelen
The size of the socket address pointed to by name in bytes.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EADDRNOTAVAIL
The calling host cannot reach the specified destination.

EAFNOSUPPORT
The address family is not supported.

EALREADY
The socket s is marked nonblocking, and a previous connection attempt
has not completed.

EBADF
The s parameter is not a valid socket descriptor.

ECONNREFUSED
The connection request was rejected by the destination host.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
int connect(int s, struct sockaddr *name,
int namelen)

Chapter 7. C language application programming 119

EFAULT
Using name and namelen would result in an attempt to copy the address
into a portion of the caller’s address space to which data cannot be written.

EINPROGRESS
The socket s is marked nonblocking, and the connection cannot be
completed immediately. The EINPROGRESS value does not indicate an
error condition.

EINVAL
The namelen parameter is not a valid length.

EISCONN
The socket s is already connected.

ENETUNREACH
The network cannot be reached from this host.

ETIMEDOUT
The connection establishment timed out before a connection was made.

fcntl()
The fcntl() call controls whether a socket is in blocking or nonblocking mode.

The blocking or nonblocking mode of a socket affects the operation of certain
commands. In blocking mode, a call waits for certain events until they happen.
When this happens, the operating system suspends the program until the event
occurs.

In similar situations with nonblocking calls, the call returns an error return code and
the program continues.

Format

Parameters
s The socket descriptor.
cmd The command to perform. Set cmd to one of the following:

F_SETFL
This command sets the status flags of socket s. One flag,
FNDELAY, can be set.

Setting the FNDELAY flag marks s as being in nonblocking mode. If
data is not present on calls that can block, such as recvfrom(), the
call returns −1, and errno is set to EWOULDBLOCK.

F_GETFL
This command gets the status flags of socket s. One flag,
FNDELAY, can be queried.

The FNDELAY flag marks s as being in nonblocking mode. If data
is not present on calls that can block, such as recvfrom(), the call
returns with −1, and errno is set to EWOULDBLOCK.

arg Set to FNDELAY if using F_SETFL. Ignored otherwise.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
#include <bsdtypes.h>
#include <fcntl.h>
signed int fcntl(int s, int cmd, int arg)

120 z/OS V1R4.0 CS: IP CICS Sockets Guide

Return values
For the F_GETFL command, the return value is a bit mask that is comprised of the
flag settings. For the F_SETFL command, the value 0 indicates success; the value
−1 indicates an error. To see which error has occurred, check the errno global
variable, which will be set to a return code. Possible codes include:
EBADF

The s parameter is not a valid socket descriptor.
EINVAL

The arg parameter is not a valid flag.

getclientid()
A getclientid() call returns the identifier by which the calling application is known to
the TCPIP address space. Do not be confused by the term client in the name of this
call; the call always returns the ID of the calling process, be it client or server. For
example, in CICS TCP/IP, this call is issued by the IBM Listener; the identifier
returned in that case is that of the Listener (a server). This identifier is used in the
givesocket() and takesocket() calls.

Format

Parameters
domain

The domain must be AF_INET.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller’s address space, or storage not modifiable
by the caller.

EPFNOSUPPORT
Domain is not AF_INET

gethostbyaddr()
The gethostbyaddr() call tries to resolve the IP address to a host name. The
resolution attempted depends on how the resolver is configured and if any local
host tables exist. Refer to z/OS Communications Server: IP Configuration Guide for
information on configuring the resolver and using local host tables.

Format

Parameters
addr The pointer to an unsigned long value containing the address of the host.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>
int getclientid(int domain, struct clientid)

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <netdb.h>
struct hostent *gethostbyaddr(char *addr, int addrlen, int domain)

Chapter 7. C language application programming 121

|
|
|
|

addrlen
The size of addr in bytes.

domain
The address domain supported (AF_INET).

Return values
The gethostbyaddr() call returns a pointer to a hostent structure for the host
address specified on the call. For more information on the hostent structure, see
Figure 90 on page 158. A null pointer is returned if the gethostbyaddr() call fails.

There are no errno values for gethostbyaddr().

gethostbyname()
The gethostbyname() call tries to resolve the host name to an IP address. The
resolution attempted depends on how the resolver is configured and if any local
host tables exist. Refer to z/OS Communications Server: IP Configuration Guide for
information on configuring the resolver and using local host tables.

Format

Parameters
name The name of the host being queried. The name has a maximum length of

255 characters.

Return values
The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call. For more information on the hostent structure, see Figure 92
on page 160. A null pointer is returned if the gethostbyname() call fails.

There are no errno values for gethostbyname().

A new part called EZACIC17 has been created. EZACIC17 is like EZACIC07 except
it uses the internal C errno function. Also, a new header file called cmanifes.h has
been created to remap EZACIC17’s long function names into unique 8-character
names.

EZACIC07 and EZACIC17 now support the gethostbyaddr() and gethostbyname()
functions.

gethostid()
The gethostid() call gets the unique 32-bit identifier for the current host in network
byte order. This value is the default home IP address.

Format

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <netdb.h>
struct hostent *gethostbyname(char *name)

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

unsigned long gethostid()

122 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|

|
|

Parameters
None.

Return values
The gethostid() call returns the 32-bit identifier of the current host, which should be
unique across all hosts.

gethostname()
The gethostname() call returns the name of the host processor on which the
program is running.

Format

Parameters
name The character array to be filled with the host name.
namelen

The length of name.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EFAULT
The name parameter specified an address outside of the caller’s address
space.

getpeername()
The getpeername() call returns the name of the peer connected to a specified
socket.

Format

Parameters
s The socket descriptor.

name A pointer to a structure containing the IP address of the connected socket
that is filled by getpeername() before it returns. The exact format of name is
determined by the domain in which communication occurs.

namelen
A pointer to the structure containing the size of the address structure
pointed to by name in bytes.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

int gethostname(char *name, int namelen)

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
#include <bsdtypes.h>
int getpeername(int s, struct sockaddr
*name, int *namelen)

Chapter 7. C language application programming 123

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using the name and namelen parameters as specified would result in an
attempt to access storage outside of the caller’s address space.

ENOTCONN
The socket is not in the connected state.

getsockname()
A getsockname() call returns the current name for socket s in the sockaddr
structure pointed to by the name parameter. It returns the address of the socket that
has been bound. If the socket is not bound to an address, the call returns with
family set, and the rest of the structure set to zero. For example, an unbound
socket would cause the name to point to a sockaddr structure with the sin_ family
field set to AF_INET and all other fields set to zero.

Stream sockets are not assigned a name until after a successful call to either
bind(), connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call completes
the binding necessary by assigning a port to the socket. This assignment can be
discovered with a call to getsockname().

Format

Parameters
s The socket descriptor.

name The address of the buffer into which getsockname() copies the name of s.

namelen
Must initially point to an integer that contains the size in bytes of the
storage pointed to by name. Upon return, that integer contains the size of
the data returned in the storage pointed to by name.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
#include <bsdtypes.h>
#include <in.h>

int getsockname(int s, struct sockaddr *name, int *
namelen)

124 z/OS V1R4.0 CS: IP CICS Sockets Guide

EFAULT
Using the name and namelen parameters as specified would result in an
attempt to access storage outside of the caller’s address space.

getsockopt(), setsockopt()
The getsockopt() call gets options associated with a socket; setsockopt() sets the
options.

The following options are recognized at the socket level:

v The ability to broadcast messages (UDP socket only)

v The ability to toggle the TCP keep-alive mechanism for a stream socket

v Lingering on close if data is present

v Reception of out-of-band data

v Local address reuse

The following option is recognized at the TCP level (IPPROTO_TCP):

v Disable sending small data amounts until acknowledgment (Nagle algorithm)

As well as checking current options, getsockopt() can return pending errors and the
type of socket.

Format

Note: The above code sample is for getsockopt(). The setsockopt() call requires
the same parameters and declarations, except that:
v Getsockopt becomes setsockopt.
v int *optlen, should be replaced by int optlen (without the asterisk).

Parameters
s The socket descriptor.

level When manipulating socket options, you must specify the level at which the
option resides and the name of the option. To manipulate options at the
socket level, the level parameter must be set to SOL_SOCKET as defined
in socket.h. For TCP_NODELAY at the TCP level, the level parameter must
be set to IPPROTO_TCP. To manipulate other TCP level options or options
at any other level, such as the IP level, supply the appropriate protocol
number for the protocol controlling the option. Currently, only the
SOL_SOCKET and IPPROTO_TCP levels are supported.

optname
The name of a specified socket option. The options that are available with
CICS TCP/IP are shown in “Possible entries for optname” on page 126.

optval and optlen
For getsockopt(), the optval and optlen parameters are used to return data
used by the particular form of the call. The optval parameter points to a
buffer that is to receive the data requested by the get command. The optlen
parameter points to the size of the buffer pointed to by the optval

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
#include <bsdtypes.h>

int getsockopt(int s, int level, int optname, char *optval, int
*optlen)

Chapter 7. C language application programming 125

parameter. It must be initially set to the size of the buffer before calling
getsockopt(). On return it is set to the actual size of the data returned.

For setsockopt(), the optval and optlen parameters are used to pass data
used by the particular set command. The optval parameter points to a
buffer containing the data needed by the set command. The optval
parameter is optional and can be set to the NULL pointer, if data is not
needed by the command. The optlen parameter must be set to the size of
the data pointed to by optval.

For both calls, all of the socket level options except SO_LINGER expect
optval to point to an integer and optlen to be set to the size of an integer.
When the integer is nonzero, the option is enabled. When it is zero, the
option is disabled. The SO_LINGER option expects optval to point to a
linger structure as defined in socket.h.

This structure is defined in the following example:
#include <manifest.h>
struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A
nonzero value enables the option. The l_linger field specifies the amount of
time to linger on close. The units of l_linger are seconds.

Possible entries for optname
The following option is recognized at the TCP level:

Option Description

TCP_NODELAY
For setsockopt, toggles the use of the Nagle algorithm (RFC 896) for all
data sent over the socket. Under most circumstances, TCP sends data
when it is presented. However, when outstanding data has not yet been
acknowledged, TCP gathers small amounts of output to be sent in a single
packet once an acknowledgment is received. For interactive applications,
such as ones that send a stream of mouse events which receive no replies,
this gathering of output can cause significant delays. For these types of
applications, disabling the Nagle algorithm improves response time. When
the Nagle algorithm is disabled, TCP can send small amounts of data
before the acknowledgment for previously sent data is received.

For getsockopt, returns the setting of the Nagle algorithm for the socket.
When optval is 0, the Nagle algorithm is enabled and TCP waits to send
small packets of data until the acknowledgment for the previous data is
received. When optval is not 0, the Nagle algorithm is disabled and TCP
can send small packets of data before the acknowledgment for previously
sent data is received.

The following options are recognized at the socket level:

Option Description

SO_BROADCAST
Toggles the ability to broadcast messages. If this option is enabled, it allows
the application to send broadcast messages over s, if the interface specified
in the destination supports the broadcasting of packets. This option has no
meaning for stream sockets.

126 z/OS V1R4.0 CS: IP CICS Sockets Guide

SO_ERROR
This cannot be specified with setsockopt(). It returns any pending error on
the socket and clears the error status. It can be used to check for
asynchronous errors on connected datagram sockets or for other
asynchronous errors (errors that are not returned explicitly by one of the
socket calls).

SO_LINGER
Lingers on close if data is present. When this option is enabled and there is
unsent data present when close() is called, the calling application is blocked
during the close() call until the data is transmitted or the connection has
timed out. If this option is disabled, the TCPIP address space waits to try to
send the data. Although the data transfer is usually successful, it cannot be
guaranteed, because the TCPIP address space waits a finite amount of
time trying to send the data. The close() call returns without blocking the
caller.

SO_OOBINLINE
Toggles reception of out-of-band data. When this option is enabled, it
causes out-of-band data to be placed in the normal data input queue as it is
received, making it available to recvfrom() without having to specify the
MSG_OOB flag in the call. When this option is disabled, it causes
out-of-band data to be placed in the priority data input queue as it is
received, making it available to recvfrom(), and only by specifying the
MSG_OOB flag in that call.

SO_REUSEADDR
Toggles local address reuse. When enabled, this option allows local
addresses that are already in use to be bound. This alters the normal
algorithm used in the bind() call. Normally, the system checks at connect
time to ensure that the local address and port do not have the same foreign
address and port. The error EADDRINUSE is returned if the association
already exists.

SO_SNDBUF
Applies to getsockopt() only. Returns the size of the data portion of the
TCP/IP send buffer in optval. The size of the data portion of the send buffer
is protocol-specific, based on the DATABUFFERPOOLSIZE statement in the
PROFILE.TCPIP data set. The value is adjusted to allow for protocol
header information.

SO_TYPE
This is for getsockopt() only. This option returns the type of the socket. On
return, the integer pointed to by optval is set to SOCK_STREAM or
SOCK_DGRAM.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EFAULT
Using optval and optlen parameters would result in an attempt to access
storage outside the caller’s address space.

Chapter 7. C language application programming 127

ENOPROTOOPT
The optname parameter is unrecognized, or the level parameter is not
SOL_SOCKET.

givesocket()
The givesocket() call tells TCP/IP to make a specified socket available to a
takesocket() call issued by another program. Any connected stream socket can be
given. Typically, givesocket() is used by a parent server that obtains sockets by
means of accept() and gives them to child servers that handle one socket at a time.

To pass a socket, the parent server first calls givesocket(), passing the name of the
child server’s address space.

The parent server then uses the EXEC CICS START command to start the child
server. The START command uses the FROM data to pass the socket descriptor
and the parent’s client ID that were previously returned by the socket() and
getclientid() calls respectively.

The child server calls takesocket(), specifying the parent’s client ID and socket
descriptor.

Having issued a givesocket() and started the child server that is to take the socket,
the concurrent server uses select() to test the socket for an exception condition.
When select() reports that an exceptional condition is pending, the concurrent
server calls close() to free the socket. If the concurrent server closes the socket
before a pending exception condition is indicated, the TCP connection is
immediately reset, and the child server’s takesocket() call is unsuccessful.

When a program has issued a givesocket() call for a socket, it cannot issue any
further calls for that socket, except close().

Format

Parameters
s The descriptor of a socket to be given to another application.

clientid
A pointer to a clientid structure specifying the target program to whom the
socket is to be given. You should fill the structure as follows:

domain
AF_INET (2).

name This is the child server’s address space name, left-justified and
padded with blanks. The child server can run in the same address
space as the parent server. In this case, the field is set to the
parent server’s address space.

subtaskname
Blanks.

reserved
Binary zeros.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

128 z/OS V1R4.0 CS: IP CICS Sockets Guide

Return Values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor, the socket has already
been given, or the socket domain is not AF_INET.

EBUSY
listen() has been called for the socket.

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller’s address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

ENOTCONN
The socket is not connected.

EOPNOTSUPP
The socket type is not SOCK_STREAM.

initapi()
The initapi() call connects your application to the TCP/IP interface.

Format

Parameters
max_sock

The maximum number of sockets requested.

subtaskid
A unique eight-character ID, which should be the 4-byte packed EIBTASKN
value in the EIB plus three character 0’s and a unique displayable
character.

Note: Using L as the last character in the subtaskid parameter causes the
tasking mechanism to assume the CICS transaction is a Listener
and schedule it using an attached task.

Return values
A positive value indicates success; a value of −1 indicates an error. To see which
error has occurred, check the errno global variable, which will be set to a return
code.

ioctl()
The ioctl() call controls the operating characteristics of sockets. This call can issue
a command to do any of the following:

v Set or clear nonblocking input and output for a socket.

v Get the number of immediately readable bytes for the socket.

v Add a routing table entry.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
int initapi(int max_sock, char *subtaskid)

Chapter 7. C language application programming 129

v Query whether the current location in the data input is pointing to out-of-band
data.

v Delete a routing table entry.

v Get the network interface address.

v Get the network interface broadcast address.

v Get the network interface configuration.

v Get the network interface destination address.

v Get the network interface flags.

v Get the network interface routing metric.

v Get the network interface network mask.

v Set the network interface routing metric.

Format

Parameters
s The socket descriptor.
cmd and arg

cmd is the command to perform; arg is a pointer to the data associated with
cmd. The following are valid ioctl() commands:

Command
Description

FIONBIO
Sets or clears nonblocking input and output for a socket. arg is a
pointer to an integer. If the integer is 0, the socket is in nonblocking
mode. Otherwise, the socket is set for nonblocking input/output.

FIONREAD
Gets the number of immediately readable bytes for the socket. arg
is a pointer to an integer. Sets the value of the integer to the
number of immediately readable characters for the socket.

SIOCADDRT
Adds a routing table entry. arg is a pointer to a rtentry structure, as
defined in rtroute.h. The routing table entry, passed as an
argument, is added to the routing tables.

SIOCATMARK
Queries whether the current location in the data input is pointing to
out-of-band data. The arg parameter is a pointer to an integer. The
parameter sets the argument to 1 if the socket points to a mark in
the data stream for out-of-band data. Otherwise, it sets the
argument to 0.

SIOCDELRT
Deletes a routing table entry. The arg parameter is a pointer to a
rtentry structure, as defined in rtroute.h. If it exists, the routing table
entry passed as an argument is deleted from the routing tables.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <ioctl.h>
#include <rtrouteh.h>
#include <if.h>

int ioctl(int s, unsigned long cmd, char *arg)

130 z/OS V1R4.0 CS: IP CICS Sockets Guide

SIOCGIFADDR
Gets the network interface address. The arg parameter is a pointer
to an ifreq structure, as defined in if.h. The interface address is
returned in the argument.

SIOCGIFBRDADDR
Gets the network interface broadcast address. The arg parameter is
a pointer to an ifreq structure, as defined in if.h. The interface
broadcast address is returned in the argument.

SIOCGIFCONF
Gets the network interface configuration. The arg parameter is a
pointer to an ifconf structure, as defined in if.h. The interface
configuration is returned in the argument.

SIOCGIFDSTADDR
Gets the network interface destination address. The arg parameter
is a pointer to an ifreq structure, as defined in if.h. The interface
destination (point-to-point) address is returned in the argument.

SIOCGIFFLAGS
Gets the network interface flags. arg is a pointer to an ifreq
structure, as defined in if.h. The interface flags are returned in the
argument.

SIOCGIFMETRIC
Gets the network interface routing metric. The arg parameter is a
pointer to an ifreq structure, as defined in if.h. The interface routing
metric is returned in the argument.

SIOCGIFNETMASK
Gets the network interface network mask. The arg parameter is a
pointer to an ifreq structure, as defined in if.h. The interface network
mask is returned in the argument.

SIOCSIFDSTADDR
Sets the network interface destination address.

SIOCSIFFLAGS
Sets the network interface flags.

SIOCSIFMETRIC
Sets the network interface routing metric. The arg parameter is a
pointer to an ifreq structure, as defined in if.h. Set the interface
routing metric to the value passed in the argument.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:
EBADF

The s parameter is not a valid socket descriptor.
EINVAL

The request is not correct or not supported.

listen()
The listen() call performs two tasks for a specified stream socket:

1. Completes the necessary binding if bind() has not been called for the socket.

2. Creates a connection request queue of a specified length to queue incoming
connection requests.

Chapter 7. C language application programming 131

The listen() call indicates a readiness to accept client connection requests. It
transforms an active socket into a passive socket. A passive socket can never be
used as an active socket to initiate connection requests.

Calling listen() is the third of four steps that a server performs to accept a
connection. It is called after allocating a stream socket with socket(), and after
binding a name to the socket with bind(). It must be called before calling accept() to
accept a connection request from a client.

Format

Parameters
s The socket descriptor.

backlog
Defines the maximum length for the queue of pending connections.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

EBADF
The s parameter is not a valid socket descriptor.

EOPNOTSUPP
The s parameter is not a socket descriptor that supports the listen() call.

read()
The read() call reads data on a specified connected socket.

Stream sockets act like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and
application A sends 1000 bytes, each call to this function can return one byte, or 10
bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should
place this call in a loop, which should repeat until all data has been received.

Format

Parameters
s The socket descriptor.
buf The pointer to the buffer that receives the data.
len The length in bytes of the buffer pointed to by the buf parameter.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

int listen(int s, int backlog)

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)

int read(int s, char *buf, int
len)

132 z/OS V1R4.0 CS: IP CICS Sockets Guide

Return values
If successful, the number of bytes copied into the buffer is returned. The value 0
indicates that the connection is closed. The value −1 indicates an error. To see
which error has occurred, check the errno global variable, which will be set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

recv()
The recv() call receives data on a specified socket.

If a datagram packet is too long to fit in the supplied buffer, datagram sockets
discard extra bytes. Stream sockets act like streams of information with no
boundaries separating data. For example, if applications A and B are connected
with a stream socket and application A sends 1000 bytes, each call to this function
can return 1 byte, or 10 bytes, or up to 1000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data has
been received.

Format

Parameters
s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags A parameter that can be set to 0 or MSG_PEEK.

MSG_OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data present on the socket. The data is returned but
not destroyed, so that a subsequent receive operation sees the
same data.

Return values
If successful, the length of the message or datagram in bytes is returned. The value
0 indicates that the connection is closed. The value −1 indicates an error. To see
which error has occurred, check the errno global variable, which will be set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>
int recvfrom(int s, char *buf, int len, int flags)

Chapter 7. C language application programming 133

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

recvfrom()
The recvfrom() call receives data on a specified socket. The recvfrom() call applies
to any datagram socket, whether connected or unconnected.

The call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard extra bytes.
Stream sockets act like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and
application A sends 1000 bytes, each call to this function can return 1 byte, or 10
bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should
place this call in a loop, calling this function until all data has been received.

Format

Parameters
s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags A parameter that can be set to 0 or MSG_PEEK.

MSG_OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data present on the socket. The data is returned but
not destroyed, so that a subsequent receive operation sees the
same data.

name A pointer to a socket address structure from which data is received. If name
is a nonzero value, the source address is returned.

namelen
A pointer to an integer containing the size of name in bytes.

Return values
If successful, the length of the message or datagram in bytes is returned. The value
0 indicates that the connection is closed. The value −1 indicates an error. To see
which error has occurred, check the errno global variable, which will be set to a
return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *name, int *namelen)

134 z/OS V1R4.0 CS: IP CICS Sockets Guide

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

select()
The select() call is useful in processes where multiple operations can occur, and it
is necessary for the program to be able to wait on one or several of the operations
to complete.

For example, consider a program that issues a read() to multiple sockets whose
blocking mode is set. Because the socket would block on a read() call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The select() call allows you to test several sockets and to execute a
subsequent I/O call only when one of the tested sockets is ready, thereby ensuring
that the I/O call will not block.

Defining which sockets to test
The select() call monitors for read operations, write operations, and exception
operations:

v When a socket is ready to read, either:

– A buffer for the specified sockets contains input data. If input data is available
for a given socket, a read operation on that socket will not block.

– A connection has been requested on that socket.

v When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write operation
on that socket will not block.

v When an exception condition has occurred on a specified socket, it is an
indication that a takesocket() has occurred for that socket.

Each socket is represented by a bit in a bit string. The bit strings are contained in
32-bit fullwords, numbered from right-to-left. The right-most bit represents socket 0,
the leftmost bit represents socket 31, and so on. Thus, if the process uses 32 (or
less) sockets, the bit string is one word long; if the process uses up to 64 sockets,
the bit string is two words long, etc. You define which sockets to test by turning on
the corresponding bit in the bit string.

Read operations: Read operations include accept(), read(), recv(), or recvfrom()
calls. A socket is ready to be read when data has been received for it, or when a
connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in READFDS to ‘1’ before issuing the select() call. When the select() call returns,
the corresponding bits in the READFDS indicate sockets ready for reading.

Write operations: A socket is selected for writing (ready to be written) when:

v TCP/IP can accept additional outgoing data.

v A connection request is received in response to an accept() call.

v The socket is marked nonblocking, and a connect() cannot be completed
immediately. In this case ERRNO will contain a value of 36 (EINPROGRESS).
This is not an error condition.

Chapter 7. C language application programming 135

A call to write(), send(), or sendto() blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a select() call to ensure that the socket is ready for writing.
Once a socket is selected for write(), the program can determine the amount of
TCP/IP buffer space available by issuing the getsockopt() call with the
SO_SNDBUF option.

To test whether any of several sockets is ready for writing, set the WRITEFDS bits
representing those sockets to ‘1’ before issuing the select() call. When the select()
call returns, the corresponding bits in the WRITEFDS indicate sockets ready for
writing.

Exception operations: For each socket to be tested, the select() call can check
for an existing exception condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a givesocket() command and
the target child server has successfully issued the takesocket() call. When this
condition is selected, the calling program (concurrent server) should issue close()
to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ will return the
out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
EXCEPTFDS bits representing those sockets to ‘1’. When the select() call returns,
the corresponding bits in the EXCEPTFDS indicate sockets with exception
conditions.

NFDS parameter: The select() call will test each bit in each string before returning
results. For efficiency, the NFDS parameter can be used to specify the number of
socket descriptors that need to be tested for any event type. The select() call tests
only bits in the range 0 through the (NFDS-1) value.

TIMEOUT parameter: If the time specified in the TIMEOUT parameter elapses
before any event is detected, the select() call returns, and RETCODE is set to 0.

Format:

Parameters:

nfds The number of socket descriptors to check.

readfds
The pointer to a bit mask of descriptors to check for reading.

writefds
The pointer to a bit mask of descriptors to check for writing.

exceptfds
The pointer to a bit mask of descriptors to be checked for exceptional
pending conditions.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>
#include <bsdtypes.h>
#include <bsdtime.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout)

136 z/OS V1R4.0 CS: IP CICS Sockets Guide

timeout
The pointer to the time to wait for the select() call to complete. (If timeout is
a NULL pointer, a zero-valued timeval structure is substituted in the call.)
The zero-valued timeval structure causes TCPIP to poll the sockets and
return immediately to the caller.

Return values: A positive value represents the total number of ready sockets in
all bit masks. The value 0 indicates an expired time limit. The three bit masks
indicate status (with one bit for each socket). A 1-bit indicates that the respective
socket is ready; a 0-bit indicates that the respective socket is not ready. You can
use the macro FD_ISSET 11 with each socket to test its status.

The value −1 indicates an error. To see which error has occurred, check the errno
global variable, which will be set to a return code. Possible codes include:

EBADF
One of the bit masks specified an incorrect socket. FD_ZERO was probably
not called to clear the bit mask before the sockets were set.

EFAULT
One of the bit masks pointed to a value outside the caller’s address space.

EINVAL
One of the fields in the timeval structure is not correct.

send()
The send() call sends data on an already-connected socket.

The select() call can be used prior to issuing the send() call to determine when it is
possible to send more data.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application is required to send 1000 bytes, each call to this
function can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore,
applications using stream sockets should place this call in a loop, calling this
function until all data has been sent.

Format

Parameters
s The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

len The length of the message pointed to by the buf parameter.

flags The flags parameter is set by specifying one or more of the following flags.
If more than one flag is specified, the logical OR operator (|) must be used
to separate them.

11. See z/OS Communications Server: IP Programmer’s Reference for details.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

int send(int s, char *msg, int len, int flags)

Chapter 7. C language application programming 137

MSG_OOB
Sends out-of-band data.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the
operation. This is usually used only by diagnostic or routing
programs.

Return values
A positive value represents the number of bytes sent. The value −1 indicates locally
detected errors. When datagram sockets are specified, no indication of failure to
deliver is implicit in a send() routine.

To see which error has occurred, check the errno global variable, which will be set
to a return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode and data is not available to read.

sendto()
The sendto() call sends data to the address specified in the call.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application wishes to send 1000 bytes, each call to this function
can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data has
been sent.

Format

Parameters
s The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

len The length of the message in the buffer pointed to by the msg parameter.

flags A parameter that can be set to 0 or MSG_DONTROUTE.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the
operation. This is usually used only by diagnostic or routing
programs.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

int sendto(int s, char *msg, int len, int flags,
struct sockaddr *to, int tolen)

138 z/OS V1R4.0 CS: IP CICS Sockets Guide

to The address of the target.

tolen The size of the structure pointed to by to.

Return values
If positive, indicates the number of bytes sent. The value −1 indicates an error. No
indication of failure to deliver is implied in the return value of this call when used
with datagram sockets.

To see which error has occurred, check the errno global variable, which will be set
to a return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

EINVAL
tolen is not the size of a valid address for the specified address family.

EMSGSIZE
The message was too big to be sent as a single datagram. The default is
large-envelope-size.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode, and data is not available to read.

setsockopt()
See “getsockopt(), setsockopt()” on page 125.

shutdown()
The shutdown() call shuts down all or part of a duplex connection.

Format

Parameters
s The socket descriptor.

how The how parameter can have a value of 0, 1, or 2, where:
v 0 ends communication from socket s.
v 1 ends communication to socket s.
v 2 ends communication both to and from socket s.

Return values
The value 0 indicates success; the value −1 indicates an error. To see which error
has occurred, check the errno global variable, which will be set to a return code.
Possible codes include:

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

int shutdown(int s, int how)

Chapter 7. C language application programming 139

EBADF
s is not a valid socket descriptor.

EINVAL
The how parameter was not set to one of the valid values. Valid values are
0, 1, and 2.

socket()
The socket() call creates an endpoint for communication and returns a socket
descriptor representing the endpoint. Different types of sockets provide different
communication services.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,
flow-controlled connections between peer applications. Stream sockets are either
active or passive. Active sockets are used by clients that initiate connection
requests with connect(). By default, socket() creates active sockets. Passive
sockets are used by servers to accept connection requests with the connect() call.
An active socket is transformed into a passive socket by binding a name to the
socket with the bind() call and by indicating a willingness to accept connections with
the listen() call. Once a socket is passive, it cannot be used to initiate connection
requests.

SOCK_DGRAM supports datagrams (connectionless messages) of a fixed
maximum length. Transimission reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or delivered multiple times.

Sockets are deallocated with the close() call.

Format

Parameters
domain

The domain parameter specifies a communication domain within which
communication is to take place. This parameter selects the address family
(format of addresses within a domain) that is used. The only family
supported by CICS TCP/IP is AF_INET, which is the internet domain. The
AF_INET constant is defined in the socket.h header file.

type The type parameter specifies the type of socket created. These socket type
constants are defined in the socket.h header file.

This must be set to either SOCK_STREAM or SOCK_DGRAM.

protocol
The protocol parameter specifies a particular protocol to be used with the
socket. In most cases, a single protocol exists to support a particular type
of socket in a particular addressing family. If the protocol parameter is set to
0, the system selects the default protocol number for the domain and

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

int socket(int domain, int type, int
protocol)

140 z/OS V1R4.0 CS: IP CICS Sockets Guide

socket type requested. Protocol numbers are found in the hlq.ETC.PROTO
data set. The default protocol for stream sockets is TCP. The default
protocol for datagram sockets is UDP.

Return values
A nonnegative socket descriptor indicates success. The value −1 indicates an error.
To see which error has occurred, check the errno global variable, which will be set
to a return code. Possible codes include:

EPROTONOSUPPORT
The protocol is not supported in this domain, or this protocol is not
supported for this socket type.

takesocket()
The takesocket() call acquires a socket from another program. The CICS Listener
passes the client ID and socket descriptor in the COMMAREA.

Format

Parameters
clientid

A pointer to the clientid of the application from which you are taking a
socket.

hisdesc
The descriptor of the socket to be taken.

Return values
A nonnegative socket descriptor is the descriptor of the socket to be used by this
process. The value −1 indicates an error. To see which error has occurred, check
the errno global variable, which will be set to a return code. Possible codes include:

EACCES
The other application did not give the socket to your application.

EBADF
The hisdesc parameter does not specify a valid socket descriptor owned by
the other application. The socket has already been taken.

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller’s address space.

EINVAL
The clientid parameter does not specify a valid client identifier.

EMFILE
The socket descriptor table is already full.

ENOBUFS
The operation cannot be performed because of the shortage of SCB or
SKCB control blocks in the TCPIP address space.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <bsdtypes.h>
#include <socket.h>

int takesocket(struct clientid *client_id, int hisdesc)

Chapter 7. C language application programming 141

EPFNOSUPPORT
The domain field of the clientid parameter is not AF_INET.

write()
The write() call writes data on a connected socket.

Stream sockets act like streams of information with no boundaries separating data.
For example, if an application wishes to send 1000 bytes, each call to this function
can send 1 byte or 10 bytes or the entire 1000 bytes. Therefore, applications using
stream sockets should place this call in a loop, calling this function until all data has
been sent.

Format

Parameters
s The socket descriptor.
buf The pointer to the buffer holding the data to be written.
len The length in bytes of the buffer pointed to by the buf parameter.

Return values
If successful, the number of bytes written is returned. The value −1 indicates an
error. To see which error has occurred, check the errno global variable, which will
be set to a return code. Possible codes include:

EBADF
s is not a valid socket descriptor.

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller’s address space.

ENOBUFS
Buffer space is not available to send the message.

EWOULDBLOCK
s is in nonblocking mode and data is not available to write.

#include <manifest.h> (non-reentrant programs only)
#include <cmanifes.h> (reentrant programs only)
#include <socket.h>

int write(int s, char *buf, int len)

142 z/OS V1R4.0 CS: IP CICS Sockets Guide

Chapter 8. Sockets extended application programming
interface (API)

Environmental restrictions and programming requirements
The following environmental restrictions and programming requirements apply to the
Callable Socket API:

v SRB mode

This API may only be invoked in TCB mode (task mode).

v Cross-memory mode

This API may only be invoked in a non-cross-memory environment
(PASN=SASN=HASN).

v Functional Recovery Routine (FRR)

Do not invoke this API with an FRR set. This will cause system recovery routines
to be bypassed and severely damage the system.

v Locks

No locks should be held when issuing this call.

v INITAPI/TERMAPI calls

The INITAPI/TERMAPI calls must be issued under the same task.

v Storage

Storage acquired for the purpose of containing data returned from a socket call
must be obtained in the same key as the application program status word (PSW)
at the time of the socket call.

v Nested socket API calls

You can not issue ″nested″ API calls within the same task. That is, if a request
block (RB) issues a socket API call and is interrupted by an interrupt request
block (IRB) in an STIMER exit, any additional socket API calls that the IRB
attempts to issue are detected and flagged as an error.

CALL instruction application programming interface (API)
This section describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or System/370 Assembler language. The format and
parameters are described for each socket call.

For more information about sockets, refer to the UNIX Programmer’s Reference
Manual.

Notes:

1. Unless your program is running in a CICS environment, reentrant code and
multithread applications are not supported by this interface.

2. Only one copy of an interface can exist in a single address space.

3. For a PL/I program, include the following statement before your first call
instruction.
DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. The entry point for the CICS Sockets Extended module (EZASOKET) is within
the EZACICAL module; therefore, EZACICAL should be included explicitly in
your link-editing JCL. If not included, you could experience problems, such as
the CICS region waiting for the socket calls to complete.

See Figure 125 on page 234.

© Copyright IBM Corp. 1994, 2002 143

If you do not want to explicitly include EZACICAL in your link-edit JCL then you
can use the EZACICSO CICS Sockets Extended module. The EZACICSO CICS
Sockets Extended module is an ALIAS for EZASOKET that resides in the same
entry point in EZACICAL as EZASOKET. You must also substitute any ″CALL
EZASOKET″ invocations in your program with ″CALL EZACICSO″. This will
allow you to use the Binder’s Automatic Library Call option (AUTOCALL) to build
your load modules.

Note: SEZATCP load library data set needs to be included in the SYSLIB DD
concatenation.

Understanding COBOL, assembler, and PL/1 call formats
This API is invoked by calling the EZASOKET or EZACICSO program and performs
the same functions as the C language calls. The parameters look different because
of the differences in the programming languages.

COBOL language call format

MM CALL ‘EZASOKET’ USING SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE. MN

The following is the ’EZACICSO’ call format for the COBOL language programs.

MM CALL ‘EZACICSO’ USING SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE. MN

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks.
Set to the name of the call. SOC-FUNCTION is case-specific. It must be in
uppercase.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Assembler language call format
The following is the ‘EZASOKET’ call format for assembler language programs.
Because DATAREG is used to access the application’s working storage,
applications using the assembler language format should not code DATAREG but
should let it default to the CICS data register.

MM CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL,MF=(E, PARMLIST) MN

The following is the ’EZACICSO’ call format for assembler language programs.

MM CALL EZACICSO,(SOC-FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL,MF=(E, PARMLIST) MN

144 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|

|
|

|
|
|

|

|||||||||

|
|
|
|

|

||||||||

PARMLIST
A remote parameter list defined in dynamic storage DFHEISTG. This list
contains addresses of 30 parameters that can be referenced by all execute
forms of the CALL.

Note: This form of CALL is necessary to meet the CICS requirement for
quasi-reentrant programming.

PL/1 language call format

MM CALL EZASOKET (SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE); MN

The following is the ’EZACICSO’ call format for the PL/1 language programs.

MM CALL EZACICSO (SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE); MN

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks.
Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Converting parameter descriptions
The parameter descriptions in this chapter are written using the VS COBOL II PIC
language syntax and conventions, but you should use the syntax and conventions
that are appropriate for the language you want to use.

Figure 82 on page 146 shows examples of storage definition statements for
COBOL, PL/1, and assembler language programs.

Chapter 8. Sockets extended application programming interface (API) 145

|

||||||||

Error messages and return codes
For information about error messages, refer to z/OS Communications Server: IP
Messages Volume 1 (EZA).

For information about error codes that are returned by TCP/IP, see Appendix B.
Return codes on page 261.

Code CALL instructions
This section contains the description, syntax, parameters, and other related
information for each call instruction included in this API.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original sockets remain available to the calling program to
accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by
use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O

VS COBOL II PIC

PIC S9(4) BINARY HALFWORD BINARY VALUE
PIC S9(8) BINARY FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

PL/1 DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

Figure 82. Storage definition statement examples

146 z/OS V1R4.0 CS: IP CICS Sockets Guide

call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an I/O call is issued: if the
socket is blocking, program processing is suspended until the event completes;
if the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the
ACCEPT to ensure that a connection request is pending. Using this technique
ensures that subsequent ACCEPT calls will not block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to
the application program to control which connection requests it accepts, but it
can close a connection immediately after discovering the identity of the client.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 83 shows an example of ACCEPT call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’ACCEPT’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 83. ACCEPT call instructions example

Chapter 8. Sockets extended application programming interface (API) 147

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'ACCEPT'. Left-justify the field and pad
it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, this is the
socket upon which the server listens.

Parameter values returned to the application
NAME A socket address structure that contains the client’s socket address.

FAMILY
A halfword binary field specifying the addressing family. The call
returns the value 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address, in
network-byte-order, of the client’s host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.

If the RETCODE value is negative, check the ERRNO field for an error
number.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the
process of creating a new socket.

The BIND call can either specify the required port or let the system choose the port.
A Listener program should always bind to the same well-known port, so that clients
know what socket address to use when attempting to connect.

In the AF_INET domain, the BIND call for a stream socket can specify the networks
from which it is willing to accept connection requests. The application can fully
specify the network interface by setting the ADDRESS field to the internet address
of a network interface. Alternatively, the application can use a wildcard to specify
that it wants to receive connection requests from any network interface. This is
done by setting the ADDRESS field to a fullword of zeros.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

148 z/OS V1R4.0 CS: IP CICS Sockets Guide

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 84 shows an example of BIND call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing BIND. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket to
be bound.

NAME Specifies the socket address structure for the socket that is to be bound.

FAMILY
A halfword binary field specifying the addressing family. The value
is always set to 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which you
want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system
assigns the port number for the socket. The application can
call the GETSOCKNAME call after the BIND call to discover
the assigned port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address
(network byte order) of the socket to be bound.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’BIND’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 84. BIND call instruction example

Chapter 8. Sockets extended application programming interface (API) 149

RESERVED
Specifies an eight-byte character field that is required but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See Appendix B. Return codes on page 261, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

CLOSE
The CLOSE call performs the following functions:

v The CLOSE call shuts down a socket and frees all resources allocated to it. If
the socket refers to an open TCP connection, the connection is closed.

v The CLOSE call is also issued by a concurrent server after it gives a socket to a
child server program. After issuing the GIVESOCKET and receiving notification
that the client child has successfully issued a TAKESOCKET, the concurrent
server issues the close command to complete the passing of ownership. In
high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems. In such systems you should
consider the use of a SHUTDOWN call before you issue the CLOSE call. See
“SHUTDOWN” on page 214 for more information.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission may be incomplete. The
SETSOCKET call can be used to set a linger condition, in which TCP/IP will
continue to attempt to complete data transmission for a specified period of
time after the CLOSE call is issued. See SO-LINGER in the description of
“SETSOCKOPT” on page 207.

2. A concurrent server differs from an iterative server. An iterative server
provides services for one client at a time; a concurrent server receives
connection requests from multiple clients and creates child servers that
actually serve the clients. When a child server is created, the concurrent
server obtains a new socket, passes the new socket to the child server, and
then dissociates itself from the connection. The CICS Listener is an example
of a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket
should be opened. An attempt to use the same socket with another call
results in a nonzero return code.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

150 z/OS V1R4.0 CS: IP CICS Sockets Guide

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 85 shows an example of CLOSE call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values returned to the application
SOC-FUNCTION

A 16-byte field containing CLOSE. Left-justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be closed.

Parameter values set by the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See Appendix B. Return codes on page 261, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

CONNECT
The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

Stream sockets
For stream sockets, the CONNECT call is issued by a client to establish connection
with a server. The call performs two tasks:

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’CLOSE’.
01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S ERRNO RETCODE.

Figure 85. CLOSE call instruction example

Chapter 8. Sockets extended application programming interface (API) 151

|
|
|
|
|
|
|
|
|

1. It completes the binding process for a stream socket if a BIND call has not been
previously issued.

2. It attempts to make a connection to a remote socket. This connection is
necessary before data can be transferred.

UDP sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it
allows you to send messages without specifying the destination.

The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.

2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new
connected socket.

The blocking mode of the CONNECT call conditions its operation.

v If the socket is in blocking mode, the CONNECT call blocks the calling program
until the connection is established, or until an error is received.

v If the socket is in nonblocking mode, the return code indicates whether the
connection request was successful.

– A RETCODE of 0 indicates that the connection was completed.

– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that
the connection is not completed but since the socket is nonblocking, the
CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more
information, see “SELECT” on page 193.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 86 on page 153 shows an example of CONNECT call instructions.

152 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on the
right with blanks.

S A halfword binary number specifying the socket descriptor of the socket that
is to be used to establish a connection.

NAME A structure that contains the socket address of the target to which the local
client socket is to be connected.

FAMILY
A halfword binary field specifying the addressing family. The value
must be 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address of the
server’s host machine in network byte order. For example, if the
internet address is 129.4.5.12 in dotted decimal notation, it would
be represented as ’8104050C’ in hex.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not
used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’CONNECT’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 86. CONNECT call instruction example

Chapter 8. Sockets extended application programming interface (API) 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|

FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call. You can query or set the FNDELAY
flag even though it is not defined in your program.

See “IOCTL” on page 177 for another way to control a socket’s blocking mode.

Values for Command which are supported by the UNIX Systems Services fcntl
callable service will also be accepted. Refer to the z/OS UNIX System Services
Programming: Assembler Callable Services Reference for more information.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 87 shows an example of FCNTL call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
that you want to unblock or query.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’FCNTL’.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(8) BINARY.
01 REQARG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

ERRNO RETCODE.

Figure 87. FCNTL call instruction example

154 z/OS V1R4.0 CS: IP CICS Sockets Guide

COMMAND
A fullword binary number with the following values.

Value Description
3 Query the blocking mode of the socket
4 Set the mode to blocking or nonblocking for the socket

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.

v If COMMAND is set to 3 ('query') the REQARG field should be set to 0.

v If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The
FNDELAY flag is on.)

– If RETCODE contains X'00000000', the socket is blocking. (The
FNDELAY flag is off.)

v If COMMAND was set to 4 (set), a successful call is indicated by 0 in this
field. In both cases, a RETCODE of −1 indicates an error (Check the
ERRNO field for the error number.)

GETCLIENTID
GETCLIENTID call returns the identifier by which the calling application is known to
the TCP/IP address space in the calling program. The CLIENT parameter is used in
the GIVESOCKET and TAKESOCKET calls. See “GIVESOCKET” on page 172 for a
discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,
the identifier of the caller (not necessarily the client) is returned.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Chapter 8. Sockets extended application programming interface (API) 155

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 88 shows an example of GETCLIENTID call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'GETCLIENTID'. The field is left-aligned
and padded to the right with blanks.

Parameter values returned to the application
CLIENT

A client-ID structure that describes the application that issued the call.

DOMAIN
A fullword binary number specifying the caller’s domain. For TCP/IP,
the value is set to 2 for AF_INET.

NAME An 8-byte character field set to the caller’s address space name.

TASK An 8-byte character field set to the task identifier of the caller.

RESERVED
Specifies 20-byte character reserved field. This field is required, but
not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETCLIENTID’.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 88. GETCLIENTID call instruction example

156 z/OS V1R4.0 CS: IP CICS Sockets Guide

GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host
whose internet address is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host internet addresses.

The address resolution depends on how the resolver is configured and if any local
host tables exist. Refer to z/OS Communications Server: IP Configuration Guide for
information on configuring the resolver and using local host tables.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 89 shows an example of GETHOSTBYADDR call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYADDR'. The field is
left-aligned and padded on the right with blanks.

HOSTADDR
A fullword binary field set to the internet address (specified in network byte
order) of the host whose name is being sought. See Appendix B. Return
codes on page 261 for information about ERRNO return codes.

Parameter values returned to the application
HOSTENT

A fullword containing the address of the HOSTENT structure.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYADDR’.
01 HOSTADDR PIC 9(8) BINARY.
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 89. GETHOSTBYADDR call instruction example

Chapter 8. Sockets extended application programming interface (API) 157

|
|
|

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 An error occurred

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 90.

This structure contains:

v The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/1 or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 90. HOSTENT structure returned by the GETHOSTBYADDR call

158 z/OS V1R4.0 CS: IP CICS Sockets Guide

the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 229.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a
host whose domain name is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host internet addresses.

The name resolution attempted depends on how the resolver is configured and if
any local host tables exist. Refer to z/OS Communications Server: IP Configuration
Guide for information on configuring the resolver and using local host tables.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 91 shows an example of GETHOSTBYNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYNAME'. The field is
left-aligned and padded on the right with blanks.

NAMELEN
A value set to the length of the host name. The maximum is 255.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYNAME’.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(255).
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

HOSTENT RETCODE.

Figure 91. GETHOSTBYNAME call instruction example

Chapter 8. Sockets extended application programming interface (API) 159

|
|
|
|
|
|
|
|
|
|

|
|
|

|

NAME A character string, up to 255 characters, set to a host name. This call
returns the address of the HOSTENT structure for this name.

Parameter values returned to the application
HOSTENT

A fullword binary field that contains the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 An error occurred

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 92. This
structure contains:

v The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 92. HOSTENT structure returned by the GETHOSTYBYNAME call

160 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/1 or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 229.

GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 93 shows an example of GETHOSTID call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTID'. The field is left-aligned
and padded on the right with blanks.

RETCODE
Returns a fullword binary field containing the 32-bit internet address of the
host. There is no ERRNO parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTID’.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION RETCODE.

Figure 93. GETHOSTID call instruction example

Chapter 8. Sockets extended application programming interface (API) 161

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 94 shows an example of GETHOSTNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is
left-aligned and padded on the right with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field.

Parameter values returned to the application
NAME Indicates the receiving field for the host name. TCP/IP Services allows a

maximum length of 24 characters. The Internet standard is a maximum
name length of 255 characters. The actual length of the NAME field is
found in NAMELEN.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTNAME’.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

ERRNO RETCODE.

Figure 94. GETHOSTNAME call instruction example

162 z/OS V1R4.0 CS: IP CICS Sockets Guide

Value Description
0 Successful call
−1 Check ERRNO for an error code

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 95 shows an example of GETPEERNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is
left-aligned and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket
connected to the remote peer whose address is required.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETPEERNAME’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 95. GETPEERNAME call instruction example

Chapter 8. Sockets extended application programming interface (API) 163

Parameter values returned to the application
NAME A structure to contain the peer name. The structure that is returned is the

socket address structure for the remote socket that is connected to the local
socket specified in field S.

FAMILY
A halfword binary field containing the connection peer’s addressing
family. The call always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

IP-ADDRESS
A fullword binary field set to the 32-bit internet address of the
connection peer’s host machine.

RESERVED
Specifies an eight-byte reserved field. This field is required, but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address, the call returns with the
FAMILY field set, and the rest of the structure set to 0.

Since a stream socket is not assigned a name until after a successful call to either
BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an
implicit bind to discover which port was assigned to the socket.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

164 z/OS V1R4.0 CS: IP CICS Sockets Guide

Figure 96 shows an example of GETSOCKNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is
left-aligned and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose
address is required.

Parameter values returned to the application
NAME Specifies the socket address structure returned by the call.

FAMILY
A halfword binary field containing the addressing family. The call
always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this socket.
If the socket is not bound, zero is returned.

IP-ADDRESS
A fullword binary field set to the 32-bit internet address of the local
host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKNAME’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 96. GETSOCKNAME call instruction example

Chapter 8. Sockets extended application programming interface (API) 165

|

|

Several options are associated with each socket. These options are described
below. You must specify the option to be queried when you issue the
GETSOCKOPT call.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 97 shows an example of GETSOCKOPT call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left-aligned
and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
requiring options.

OPTNAME
Input parameter. Set OPTNAME to the required option before you issue
GETSOCKOPT. See Table 12 on page 167 below for a list of the options
and their unique requirements. See Appendix C,
“GETSOCKOPT/SETSOCKOPT command values” on page 275 for the
numeric values of OPTNAME.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKOPT’.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 OPTVAL PIC 9(8) BINARY.

01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

Figure 97. GETSOCKOPT call instruction example

166 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|||

||

||

||

|
|
|

||

||

||

||
|
|

|
|

|
|

|

|
|
|

||
|

|
|
|
|
|
|

Note: COBOL programs cannot contain field names with the underscore
character. Fields representing the option name should contain
dashes instead.

Parameter values returned to the application
OPTVAL

Output parameter. Contains the status of the specified option. See Table 12
below for a list of the options and their unique requirements

OPTLEN
Output parameter. A fullword binary field containing the length of the data
returned in OPTVAL. See Table 12 below for how to determine the value of
OPTLEN.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B, “Return codes” on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

Table 12. OPTNAME options for GETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

IP_ADD_MEMBERSHIP

Use this option to enable an
application to join a multicast group
on a specific interface. An interface
has to be specified with this option.
Only applications that want to receive
multicast datagrams need to join
multicast groups.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK).
The IP_MREQ structure
contains a 4-byte IPv4
multicast address followed by a
4-byte IPv4 interface address.

See hlq.SEZAINST(CBLOCK)
for the PL/1 example of
IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR PIC 9(8)

BINARY.
05 IMR-INTERFACE PIC 9(8)

BINARY.

N/A

Chapter 8. Sockets extended application programming interface (API) 167

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|

||
||
||

||

||
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

Table 12. OPTNAME options for GETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

IP_DROP_MEMBERSHIP

Use this option to enable an
application to exit a multicast group.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK).
The IP_MREQ structure
contains a 4-byte IPv4
multicast address followed by a
4-byte IPv4 interface address.

See hlq.SEZAINST(CBLOCK)
for the PL/1 example of
IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR PIC 9(8)

BINARY.
05 IMR-INTERFACE PIC 9(8)

BINARY.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the
IPV4 interface address used for
sending outbound multicast
datagrams from the socket
application.
Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field
containing an IPv4
interface address.

IP_MULTICAST_LOOP

Use this option to control or
determine whether a copy of
multicast datagrams are looped back
for multicast datagrams sent to a
group to which the sending host itself
belongs. The default is to loop the
datagrams back.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will
contain a 1.

If disabled, will
contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is ’01’x
meaning that multicast is available
only to the local subnet.

A 1-byte binary field containing
the value of ’00’x to ’FF’x.

A 1-byte binary field
containing the value
of ’00’x to ’FF’x.

SO_BROADCAST

Use this option to set or determine
whether a program can send
broadcast messages over the socket
to destinations that can receive
datagram messages. The default is
disabled.

Note: This option has no meaning
for stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

168 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|

|
|

|
|

Table 12. OPTNAME options for GETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_ERROR

Use this option to request pending
errors on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors
that are not explicitly returned by one
of the socket calls. The error status is
clear afterwards.

N/A A 4-byte binary field
containing the most
recent ERRNO for
the socket.

SO_LINGER

Use this option to control or
determine how TCP/IP processes
data that has not been transmitted
when a CLOSE is issued for the
socket. The default is disabled.

Note: This option has meaning only
for stream sockets.

When SO_LINGER is set and
CLOSE is called, the calling program
is blocked until the data is
successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the
CLOSE returns without blocking the
caller, and TCP/IP continues to
attempt to send data for a specified
time. This usually allows sufficient
time to complete the data transfer.

Use of the SO_LINGER option does
not guarantee successful completion
because TCP/IP only waits the
amount of time specified in OPTVAL
for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value
to enable and set to 0 to
disable this option. Set
LINGER to the number of
seconds that TCP/IP lingers
after the CLOSE is issued.

Contains an 8-byte
field containing two
4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero returned
in ONOFF =
enabled, a 0 =
disabled. LINGER
indicates the
number of seconds
that TCP/IP will try
to send data after
the CLOSE is
issued.

SO_KEEPALIVE

Use this option to set or determine
whether the keepalive mechanism
periodically sends a packet on an
otherwise idle connection for a
stream socket.

The default is disabled.

When activated, the keepalive
mechanism periodically sends a
packet on an otherwise idle
connection. If the remote TCP does
not respond to the packet or to
retransmissions of the packet, the
connection is terminated with the
error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

Chapter 8. Sockets extended application programming interface (API) 169

|

||
|
|
|

|

|
|
|
|
|
|
|

||
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|

Table 12. OPTNAME options for GETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_OOBINLINE

Use this option to control or
determine whether out-of-band data
is received.
Note: This option has meaning only
for stream sockets.

When this option is set, out-of-band
data is placed in the normal data
input queue as it is received and is
available to a RECV or a
RECVFROM even if the OOB flag is
not set in the RECV or the
RECVFROM.

When this option is disabled,
out-of-band data is placed in the
priority data input queue as it is
received and is available to a RECV
or a RECVFROM only when the OOB
flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

SO_RCVBUF

Use this option to control or
determine the size of the data portion
of the TCP/IP receive buffer.

The size of the data portion of the
receive buffer is protocol-specific,
based on the following values prior to
any SETSOCKOPT call:

v TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a
TCP Socket

v UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a
UDP Socket

v The default of 65 535 for a raw
socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP
receive buffer.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains
a positive value
indicating the size of
the data portion of
the TCP/IP receive
buffer.

If disabled, contains
a 0.

170 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

Table 12. OPTNAME options for GETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_REUSEADDR

Use this option to control or
determine whether local addresses
are reused. The default is disabled.
This alters the normal algorithm used
with BIND. The normal BIND
algorithm allows each Internet
address and port combination to be
bound only once. If the address and
port have been already bound, then a
subsequent BIND will fail and result
error will be EADDRINUSE.

When this option is enabled, the
following situations are supported:

v A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one
time per port.

v A server with active client
connections can be restarted and
can bind to its port without having
to close all of the client
connections.

v For datagram sockets, multicasting
is supported so multiple bind() calls
can be made to the same class D
address and port number.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

SO_SNDBUF

Use this option to control or
determine the size of the data portion
of the TCP/IP send buffer. The size of
the TCP/IP send buffer is protocol
specific and is based on the
following:

v The TCPSENDBufrsize keyword
on the TCPCONFIG statement in
the PROFILE.TCPIP data set for a
TCP socket

v The UDPSENDBufrsize keyword
on the UDPCONFIG statement in
the PROFILE.TCPIP data set for a
UDP socket

v The default of 65 535 for a raw
socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP
send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains
a positive value
indicating the size of
the data portion of
the TCP/IP send
buffer.

If disabled, contains
a 0.

Chapter 8. Sockets extended application programming interface (API) 171

|

||
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

Table 12. OPTNAME options for GETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_TYPE

Use this option to return the socket
type.

N/A A 4-byte binary field
indicating the
sockets type:

X’1’ =
SOCK_STREAM

X’2’ =
SOCK_DGRAM

X’3’ = SOCK_RAW

TCP_NODELAY

TCP_NODELAY toggles the use of
the Nagle algorithm (RFC 896) for all
data sent over the socket. Under
most circumstances, TCP sends data
when the application performs the
send request. However, when
outstanding data has not yet been
acknowledged and the application
performs subsequent send requests
for small amounts of data, TCP
gathers these requests into a single
packet and sends them once an
acknowledgement is received.

For certain types of applications, such
as ones that send a stream of small
data requests without any intervening
replies from the partner application,
this gathering of output can cause
significant delays. For these types of
applications, disabling the Nagle
algorithm improves response time.
When the Nagle algorithm is
disabled, TCP can send small
amounts of data before the
acknowledgement for previously sent
data is received.
Note: To set TCP_NODELAY
OPNAME value for COBOL
programs:

01 TCP-NODELAY-VAL PIC 9(10)
COMP VALUE 2147483649.

01 TCP-NODELAY-REDEF
REDEFINES TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.
05 TCP-NODELAY-BITSTREAM

PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or
nonzero.

A 4-byte binary field.

If enabled, contains
a 0.

If disabled, contains
a 1.

GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

172 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|

||
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|

|
|

|
|

UNIX-based platforms use a command called FORK to create a new child process
that has the same descriptors as the parent process. You can use this new child
process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:

1. A process issues a GETCLIENTID call to get the job name of its region and its
MVS subtask identifier. This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child
process.

3. The child process issues a TAKESOCKET call to get the socket. The socket
now belongs to the child process, and can be used by TCP/IP to communicate
with another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls that
use this socket. The socket descriptor that was passed to the
TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT
command that waits for the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Sockets which have been given, but not taken for a period of four days, will be
closed and will no longer be available for taking. If a select for the socket is
outstanding, it will be posted.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 98 on page 174 shows an example of GIVESOCKET call instructions.

Chapter 8. Sockets extended application programming interface (API) 173

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'GIVESOCKET'. The field is left-aligned
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
given.

CLIENT
A structure containing the identifier of the application to which the socket
should be given.

DOMAIN
A fullword binary number that must be set to 2, indicating AF_INET.

NAME Specifies an 8-character field, left-aligned, padded to the right with
blanks, that can be set to the name of the MVS address space that
will contain the application that is going to take the socket.

v If the socket-taking application is in the same address space as
the socket-giving application (as in CICS), NAME can be
specified. The socket-giving application can determine its own
address space name by issuing the GETCLIENTID call.

v If the socket-taking application is in a different MVS address
space this field should be set to blanks. When this is done, any
MVS address space that requests the socket can have it.

TASK Specifies an eight-character field that can be set to blanks, or to the
identifier of the socket-taking MVS subtask. If this field is set to
blanks, any subtask in the address space specified in the NAME
field can take the socket.

v As used by IMS and CICS, the field should be set to blanks.

v If TASK identifier is nonblank, the socket-receiving task should
already be in execution when the GIVESOCKET is issued.

RESERVED
A 20-byte reserved field. This field is required, but not used.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GIVESOCKET’.
01 S PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 98. GIVESOCKET call instruction example

174 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

INITAPI and INITAPIX
The INITAPI and INITAPIX calls connect an application to the TCP/IP interface. The
sole difference between INITAPI and INITAPIX is explained in the description of the
IDENT parameter. INITAPI is preferred over INITAPIX unless there is a specific
need to connect applications to alternate TCP/IP stacks. CICS Sockets programs
that are written in COBOL, PL/I, or assembler language should issue the INITAPI or
INITAPIX macro before they issue other calls to the CICS Sockets interface.

If a CICS task’s first call to the CICS Sockets interface is not an INITAPI or
INITAPIX, then the CICS Sockets interface will generate a default INITAPI call.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 99 on page 176 shows an example of INITAPI call instructions. The same
example can be used for the INITAPIX call by simply changing the
SOC-FUNCTION value to ’INITAPIX’.

Chapter 8. Sockets extended application programming interface (API) 175

|
|
|
|
|
|

|
|

|
|
|

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing INITAPI or INITAPIX. The field is left
justified and padded on the right with blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this
application will ever have open at one time. The maximum number is 2000
and the minimum number is 50. This value is used to determine the amount
of memory that will be allocated for socket control blocks and buffers. If less
than 50 are requested, MAXSOC defaults to 50.

IDENT A 16-byte structure containing the name of the TCP/IP address space
(TCPNAME) and the name of calling program’s address space
(ADSNAME).

The way that the CICS Sockets interface handles the TCPNAME part of the
structure differs between INITAPI and INITAPIX (as explained in the
following description of TCPNAME).

TCPNAME
An 8-byte character field which should be set to the MVS jobname
of the TCP/IP address space with which you are connecting.

If the function is INITAPI, then the CICS Sockets interface always
overrides this with the value in the TCPADDR configuration
parameter. In OS/390 V2R8 and earlier, the INITAPIX functions the
same way. In z/OS V1R1 and higher, the TCPNAME passed by the
application program on an INITAPIX call overrides the TCPADDR
value.

ADSNAME
An 8-byte character field set to the identity of the calling program’s
address space. It is the name of the CICS startup job. The CICS
Sockets interface always overrides this value with VTAM APPLID of
the CICS address space.

SUBTASK
Indicates an 8-byte field containing a unique subtask identifier that is used
to distinguish between multiple subtasks within a single address space. For
your subtask name, use the zoned decimal value of the CICS task ID

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’INITAPI’.
01 MAXSOC PIC 9(4) BINARY.
01 IDENT.

02 TCPNAME PIC X(8).
02 ADSNAME PIC X(8).

01 SUBTASK PIC X(8).
01 MAXSNO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC IDENT SUBTASK
MAXSNO ERRNO RETCODE.

Figure 99. INITAPI call instruction example

176 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

(EIBTASKN), plus a unique displayable character. In CICS, if no value is
specified, the zoned-decimal value of the CICS task ID appended with the
letter C is used.

Parameter values returned to the application
MAXSNO

A fullword binary field that contains the highest socket number assigned to
this application. The lowest socket number is zero. If you have 50 sockets,
they are numbered from 0 to 49. If MAXSNO is not specified, the value for
MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL call, you must load a value representing the
characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND. See Table 13 on page 179
for information about REQARG and RETARG.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 100 on page 178 shows an example of IOCTL call instructions.

Chapter 8. Sockets extended application programming interface (API) 177

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be
controlled.

COMMAND
To control an operating characteristic, set this field to one of the following
symbolic names. A value in a bit mask is associated with each symbolic
name. By specifying one of these names, you are turning on a bit in a mask
that communicates the requested operating characteristic to TCP/IP.

FIONBIO
Sets or clears blocking status.

FIONREAD
Returns the number of immediately readable bytes for the socket.

WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE ’IOCTL’.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(4) BINARY.

01 IFREQ.
05 NAME PIC X(16).
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
05 ADDRESS PIC 9(8) BINARY.
05 FILLER PIC X(8).

01 IFREQOUT.
05 NAME PIC X(16).
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
05 ADDRESS PIC 9(8) BINARY.
05 FILLER PIC X(8).

01 GRP-IOCTL-TABLE.
05 IOCTL-ENTRY OCCURS 1 TO max TIMES DEPENDING ON count.
10 NAME PIC X(16).
10 FAMILY PIC 9(4) BINARY.
10 PORT PIC 9(4) BINARY.
10 ADDRESS PIC 9(8) BINARY.
10 FILLER PIC X(8).

01 IOCTL-REQARG USAGE IS POINTER.
01 IOCTL-RETARG USAGE IS POINTER.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

RETARG ERRNO RETCODE.

Figure 100. IOCTL call instruction example

178 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SIOCGIFADDR
Requests the network interface address for a given interface name.
See the NAME field in Figure 101 for the address format.

SIOCGIFBRDADDR
Requests the network interface broadcast address for a given
interface name. See the NAME field in Figure 101 for the address
format.

SIOCGIFCONF
Requests the network interface configuration. The configuration is a
variable number of 32-byte structures formatted as shown in
Figure 101.

v When IOCTL is issued, REQARG must contain the length of the
array to be returned. To determine the length of REQARG,
multiply the structure length (array element) by the number of
interfaces requested. The maximum number of array elements
that TCP/IP can return is 100.

v When IOCTL is issued, RETARG must be set to the beginning of
the storage area that you have defined in your program for the
array to be returned.

SIOCGIFDSTADDR
Requests the network interface destination address for a given
interface name. (See IFREQ NAME field, Figure 101 for format.)

REQARG and RETARG
REQARG is used to pass arguments to IOCTL and RETARG receives
arguments from IOCTL. The REQARG and RETARG parameters are
described in Table 13.

Table 13. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO
X'8004A77E'

4 Set socket mode to:
X'00'=blocking;
X'01'=nonblocking

0 Not used

FIONREAD
X'4004A77F'

0 Not used 4 Number of characters
available for read

SIOCGIFADDR
X'C020A70D'

32 First 16
bytes—interface
name. Last 16
bytes—not used

32 Network interface
address (See
Figure 101 for
format.)

SIOCGIFBRDADDR
X'C020A712'

32 First 16
bytes—interface
name. Last 16
bytes—not used

32 Network interface
address (See
Figure 101 for
format.)

03 NAME PIC X(16).
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

Figure 101. Interface request structure (IFREQ) for the IOCTL call

Chapter 8. Sockets extended application programming interface (API) 179

Table 13. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGIFCONF
X'C008A714'

8 Size of RETARG See note.

Note: When you call IOCTL with the SIOCGIFCONF command set, REQARG should
contain the length in bytes of RETARG. Each interface is assigned a 32-byte array element
and REQARG should be set to the number of interfaces times 32. TCP/IP for MVS can
return up to 100 array elements.

SIOCGIFDSTADDR
X'C020A70F'

32 First 16
bytes—interface
name. Last 16
bytes—not used

32 Destination interface
address (See
Figure 101 on
page 179 for format.)

Parameter values returned to the application
RETARG

Returns an array whose size is based on the value in COMMAND. See
Table 13 for information about REQARG and RETARG.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

The COMMAND SIOGIFCONF returns a variable number of network interface
configurations. Figure 102 contains an example of a COBOL II routine that can be
used to work with such a structure.

Note: This call can only be programmed in languages that support address
pointers. Figure 102 shows a COBOL II example for SIOCGIFCONF.

WORKING-STORAGE SECTION.
77 REQARG PIC 9(8) COMP.
77 COUNT PIC 9(8) COMP VALUE max number of interfaces.

LINKAGE SECTION.
01 RETARG.

05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.
10 NAME PIC X(16).
10 FAMILY PIC 9(4) BINARY.
10 PORT PIC 9(4) BINARY.
10 ADDR PIC 9(8) BINARY.
10 NULLS PIC X(8).

PROCEDURE DIVISION.
MULTIPLY COUNT BY 32 GIVING REQARQ.
CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND

REQARG RETARG ERRNO RETCODE.

Figure 102. COBOL II example for SIOCGIFCONF

180 z/OS V1R4.0 CS: IP CICS Sockets Guide

LISTEN
The LISTEN call:

v Completes the bind, if BIND has not already been called for the socket.

v Creates a connection-request queue of a specified length for incoming
connection requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from
clients. When a connection request is received, a new socket is created by a
subsequent ACCEPT call, and the original socket continues to listen for additional
connection requests. The LISTEN call converts an active socket to a passive socket
and conditions it to accept connection requests from clients. Once a socket
becomes passive, it cannot initiate connection requests.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 103 shows an example of LISTEN call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’LISTEN’.
01 S PIC 9(4) BINARY.
01 BACKLOG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 103. LISTEN call instruction example

Chapter 8. Sockets extended application programming interface (API) 181

BACKLOG
A fullword binary number set to the number of communication requests to
be queued.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

READ
The READ call reads the data on socket s. This is the conventional TCP/IP read
data operation. If a datagram packet is too long to fit in the supplied buffer,
datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
this call in a loop that repeats until all data has been received.

Note: See “EZACIC05” on page 226 for a subroutine that will translate ASCII input
data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 104 on page 183 shows an example of READ call instructions.

182 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing READ. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Parameter values returned to the application
BUF On input, a buffer to be filled by completion of the call. The length of BUF

must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

−1 Check ERRNO for an error code.

READV
The READV function reads data on a socket and stores it in a set of buffers. If a
datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’READ’.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 104. READ call instruction example

Chapter 8. Sockets extended application programming interface (API) 183

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 105 shows an example of READV call instructions.

Parameter values set by the application
S A value or the address of a halfword binary number specifying the

descriptor of the socket into which the data is to be read.

IOV An array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:

WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE ’READV ’.
01 S PIC 9(4) BINARY.
01 IOVCNT PIC 9(4) BINARY.

01 MSG-HDR.
03 MSG_NAME POINTER.
03 MSG_NAME_LEN POINTER.
03 IOVPTR POINTER.
03 IOVCNT POINTER.
03 MSG_ACCRIGHTS PIC X(4).
03 MSG_ACCRIGHTS_LEN PIC 9(4) BINARY.

01 IOV.
03 BUFFER-ENTRY OCCURS N TIMES.

05 BUFFER_ADDR POINTER.
05 RESERVED PIC X(4).
05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS-OF BUFFER1.
SET BUFFER-LENGTH(1) TO LENGTH-OF BUFFER1.
SET BUFFER-POINTER(2) TO ADDRESS-OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH-OF BUFFER2.
" " " " "
" " " " "
SET BUFFER-POINTER(n) TO ADDRESS-OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH-OF BUFFERn.

CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 105. READV call instruction example

184 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fullword 1
Pointer to the address of a data buffer, which is filled in on
completion of the call.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in fullword one.

IOVCNT
A fullword binary field specifying the number of data buffers provided for this
call.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

−1 Check ERRNO for an error code.

RECV
The RECV call, like READ, receives data on a socket with descriptor S. RECV
applies only to connected sockets. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:
v Peek at the incoming message without having it removed from the buffer.
v Read out-of-band data.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in
nonblocking mode, RECV returns a −1 and sets ERRNO to 35 (EWOULDBLOCK).
See “FCNTL” on page 154 or “IOCTL” on page 177 for a description of how to set
nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See “EZACIC05” on page 226 for a subroutine that will translate ASCII input
data to EBCDIC.

Chapter 8. Sockets extended application programming interface (API) 185

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 106 shows an example of RECV call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECV. The field is left-aligned and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field with values as follows:

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’RECV’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 PEEK PIC 9(8) BINARY VALUE IS 2.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE BUF

ERRNO RETCODE.

Figure 106. RECV call instruction example

186 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECV call will
read the same data.

NBYTE
A value or the address of a fullword binary number set to the size of BUF.
RECV does not receive more than the number of bytes of data in NBYTE
even if more data is available.

Parameter values returned to the application
BUF The input buffer to receive the data.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 The socket is closed
>0 A positive return code indicates the number of bytes copied into the

buffer.
−1 Check ERRNO for an error code

RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer. The RECVFROM call applies to both connected and unconnected sockets.
The socket address is returned in the NAME structure. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvfrom() returns the source address associated with each
incoming datagram. For connection-oriented protocols like TCP, getpeername()
returns the address associated with the other end of the connection.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a −1 and sets ERRNO to 35

Chapter 8. Sockets extended application programming interface (API) 187

(EWOULDBLOCK). See “FCNTL” on page 154 or “IOCTL” on page 177 for a
description of how to set nonblocking mode.

Note: See “EZACIC05” on page 226 for a subroutine that will translate ASCII input
data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 107 shows an example of RECVFROM call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-aligned
and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVFROM’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 PEEK PIC 9(8) BINARY VALUE IS 2.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS

NBYTE BUF NAME ERRNO RETCODE.

Figure 107. RECVFROM call instruction example

188 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FLAGS
A fullword binary field containing flag values as follows:

Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVFROM
call will read the same data.

NBYTE
A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application
BUF Defines an input buffer to receive the input data.

NAME A structure containing the address of the socket that sent the data. The
structure is:

FAMILY
A halfword binary number specifying the addressing family. The
value is always 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit internet address of
the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 The socket is closed.
>0 A positive return code indicates the number of bytes of data

transferred by the read call.
−1 Check ERRNO for an error code.

RECVMSG
The RECVMSG call receives messages on a socket with descriptor S and stores
them in an array of message headers. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvmsg() returns the source address associated with each
incoming datagram. For connection-oriented protocols like TCP, getpeername()
returns the address associated with the other end of the connection.

Chapter 8. Sockets extended application programming interface (API) 189

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 108 on page 191 shows an example of RECVMSG call instructions.

190 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVMSG’.
01 S PIC 9(4) BINARY.
01 MSG.

03 NAME USAGE IS POINTER.
03 NAME-LEN USAGE IS POINTER.
03 IOV USAGE IS POINTER.
03 IOVCNT USAGE IS POINTER.
03 ACCRIGHTS USAGE IS POINTER.
03 ACCRLEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 PEEK PIC 9(8) BINARY VALUE IS 2.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.

01 L1.
03 RECVMSG-IOVECTOR.

05 IOV1A USAGE IS POINTER.
05 IOV1AL PIC 9(8) COMP.
05 IOV1L PIC 9(8) COMP.
05 IOV2A USAGE IS POINTER.
05 IOV2AL PIC 9(8) COMP.
05 IOV2L PIC 9(8) COMP.
05 IOV3A USAGE IS POINTER.
05 IOV3AL PIC 9(8) COMP.
05 IOV3L PIC 9(8) COMP.

03 RECVMSG-BUFFER1 PIC X(16).
03 RECVMSG-BUFFER2 PIC X(16).
03 RECVMSG-BUFFER3 PIC X(16).
03 RECVMSG-BUFNO PIC 9(8) COMP.

PROCEDURE DIVISION USING L1.

SET NAME TO NULLS.
SET NAME-LEN TO NULLS.
SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
MOVE 3 TO RECVMSG-BUFNO.
SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.
MOVE 0 TO MSG-IOV1AL.
MOVE LENGTH OF RECVMSG-BUFFER1 TO IOV1L.
SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.
MOVE 0 TO IOV2AL.
MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
MOVE 0 TO IOV3AL.
MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
SET ACCRIGHTS TO NULLS.
SET ACCRLEN TO NULLS.
MOVE 0 TO FLAGS.
MOVE SPACES TO RECVMSG-BUFFER1.
MOVE SPACES TO RECVMSG-BUFFER2.
MOVE SPACES TO RECVMSG-BUFFER3.

CALL ’EZASOKET’ USING SOC-FUNCTION S MSG FLAGS ERRNO RETCODE.

Figure 108. RECVMSG call instruction example

Chapter 8. Sockets extended application programming interface (API) 191

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameter values set by the application
S A value or the address of a halfword binary number specifying the socket

descriptor.

MSG On input, a pointer to a message header into which the message is
received upon completion of the call.

Field Description

NAME On input, a pointer to a buffer where the sender address is stored
upon completion of the call.

NAME-LEN
On input, a pointer to the size of the address buffer that is filled in
on completion of the call.

IOV On input, a pointer to an array of tripleword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer

Fullword 2
Reserved

Fullword 3
A pointer to the length of the data buffer referenced in
fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number
of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword binary field with values as follows:

Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVMSG call
will read the same data.

192 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter values returned by the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description

<0 Call returned error. See ERRNO field.

0 Connection partner has closed connection.

>0 Number of bytes read.

SELECT
In a process where multiple I/O operations can occur, it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The SELECT call allows you to test several sockets and to execute a
subsequent I/O call only when one of the tested sockets is ready, thereby ensuring
that the I/O call will not block.

To use the SELECT call as a timer in your program, do one of the following:
v Set the read, write, and except arrays to zeros.
v Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Defining which sockets to test
The SELECT call monitors for read operations, write operations, and exception
operations:

v When a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is available
for a given socket, a read operation on that socket will not block.

Chapter 8. Sockets extended application programming interface (API) 193

– A connection has been requested on that socket.

v When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write operation
on that socket will not block.

v When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit of the
first fullword represents socket descriptor 0 and the leftmost bit of the first fullword
represents socket descriptor 31. If your process uses 32 or fewer sockets, the bit
string is one fullword. If your process uses 33 sockets, the bit string is two
fullwords. The rightmost bit of the second fullword represents socket descriptor 32,
and the leftmost bit of the second fullword represents socket descriptor 63. This
pattern repeats itself for each subsequent fullword. That is, the leftmost bit of
fullword n represents socket 32n-1 and the rightmost bit represents socket 32(n-1).

You define the sockets that you want to test by turning on bits in the string.
Although the bits in the fullwords are numbered from right to left, the fullwords are
numbered from left to right with the leftmost fullword representing socket descriptor
0–31. For example:
First fullword Second fullword Third fullword
socket descriptor 31...0 socket descriptor 63...32 socket descriptor 95...64

Note: To simplify string processing in COBOL, you can use the program EZACIC06
to convert each bit in the string to a character. For more information, see
“EZACIC06” on page 227.

Read operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it,
or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

v TCP/IP can accept additional outgoing data.

v The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket will be selected for write when the CONNECT
completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECT call to ensure that the socket is ready for writing.
Once a socket is selected for WRITE, the program can determine the amount of
TCP/IP buffer space available by issuing the GETSOCKOPT call with the
SO-SNDBUF option.

194 z/OS V1R4.0 CS: IP CICS Sockets Guide

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to one before issuing the SELECT call. When the
SELECT call returns, the corresponding bits in the WRETMSK indicate sockets
ready for writing.

Exception operations
For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ will return the
out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to one. When the SELECT call returns,
the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC parameter
The SELECT call must test each bit in each string before returning results. For
efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECT call
tests only bits in the range 0 through the MAXSOC value.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns and RETCODE is set to 0.

Figure 109 shows an example of SELECT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

Figure 109. SELECT call instruction example

Chapter 8. Sockets extended application programming interface (API) 195

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into
one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit
masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-aligned and
padded on the right with blanks.

MAXSOC
A fullword binary field set to the largest socket descriptor number that is to
be checked plus 1. (Remember to start counting at 0).

Note: For the INITAPI call, the MAXSOC field is a halfword binary field.
Therefore, do not reuse this field for the SELECT and INITAPI calls.

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, specify the TIMEOUT value to be 0.

TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECT to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

v For each socket to be checked for pending read events, the
corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for read
events.

WSNDMSK
A bit string sent to request write event status.

v For each socket to be checked for pending write events, the
corresponding bit in the string should be set to set.

v For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for write
events.

ESNDMSK
A bit string sent to request exception event status.

196 z/OS V1R4.0 CS: IP CICS Sockets Guide

v For each socket to be checked for pending exception events, the
corresponding bit in the string should be set to set.

v For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for exception
events.

Parameter values returned to the application
RRETMSK

A bit string returned with the status of read events. The length of the string
should be equal to the maximum number of sockets to be checked. For
each socket that is ready to read, the corresponding bit in the string will be
set to 1; bits that represent sockets that are not ready to read will be set to
0.

WRETMSK
A bit string returned with the status of write events. The length of the string
should be equal to the maximum number of sockets to be checked. For
each socket that is ready to write, the corresponding bit in the string will be
set to 1; bits that represent sockets that are not ready to be written will be
set to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that has an exception status, the corresponding bit will be
set to 1; bits that represent sockets that do not have exception status will
be set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks

0 Indicates that the SELECT time limit has expired

−1 Check ERRNO for an error code

SELECTEX
The SELECTEX call monitors a set of sockets, a time value and an ECB or list of
ECBs. It completes when either one of the sockets has activity, the time value
expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:
v Set the read, write, and except arrays to zeros
v Specify MAXSOC <= 0

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Chapter 8. Sockets extended application programming interface (API) 197

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 110 shows an example of SELECTEX call instructions.

Parameter values set by the application
MAXSOC

A fullword binary field specifying the largest socket descriptor number being
checked.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MINUTES PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 SELECB PIC X(4).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

where * is the size of the select mask

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
SELECB ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

Figure 110. SELECTEX call instruction example

198 z/OS V1R4.0 CS: IP CICS Sockets Guide

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECTEX to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this parameter
is not specified or the specified bit-mask is zeros, the SELECT will not
check for read interrupts. The length of this bit-mask array is dependent on
the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this parameter
is not specified or the specified bit-mask is zeros, the SELECT will not
check for write interrupts. The length of this bit-mask array is dependent on
the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for exception interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

COBOL users who need more information should see the assembler
macroinstruction guide for their operating system.

Note: The maximum number of ECBs that can be specified in a list is 63.

Parameter values returned by the application
ERRNO

A fullword binary field; if RETCODE is negative, this contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be 0)
or one of the caller’s ECBs has been posted (ECB value will be
nonzero and the caller’s descriptor sets will be set to 0). The caller
must initialize the ECB values to 0 before issuing the SELECTEX
call.

-1 Error; check ERRNO.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

Chapter 8. Sockets extended application programming interface (API) 199

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

Note: See EZACIC06 for information on bits mask conversion.

SEND
The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

v Send out-of-band data, for example, interrupts, aborts, and data marked urgent.
Only stream sockets created in the AF_INET address family support out-of-band
data.

v Suppress use of local routing tables. This implies that the caller takes control of
routing and writing network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes, with
the number of bytes sent returned in RETCODE. Therefore, programs using stream
sockets should place this call in a loop, reissuing the call until all data has been
sent.

Note: See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC
input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 111 on page 201 shows an example of SEND call instructions.

200 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SEND. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket that
is sending data.

FLAGS
A fullword binary field with values as follows:

Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes of data to be
transferred.

BUF The buffer containing the data to be transmitted. BUF should be the size
specified in NBYTE.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SEND’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 DONT-ROUTE PIC 9(8) BINARY VALUE IS 4.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

BUF ERRNO RETCODE.

Figure 111. SEND call instruction example

Chapter 8. Sockets extended application programming interface (API) 201

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 Check ERRNO for an error code

SENDMSG
The SENDMSG call sends messages on a socket with descriptor S passed in an
array of messages.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 112 on page 203 shows an example of SENDMSG call instructions.

202 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDMSG’.
01 S PIC 9(4) BINARY.
01 MSG.

03 NAME USAGE IS POINTER.
03 NAME-LEN USAGE IS POINTER.
03 IOV USAGE IS POINTER.
03 IOVCNT USAGE IS POINTER.
03 ACCRIGHTS USAGE IS POINTER.
03 ACCRLEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 DONTROUTE PIC 9(8) BINARY VALUE IS 4.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.

01 L1
03 SENDMSG-IOVECTOR.

05 IOV1A USAGE IS POINTER.
05 IOV1AL PIC 9(8) COMP.
05 IOV1L PIC 9(8) COMP.
05 IOV2A USAGE IS POINTER.
05 IOV2AL PIC 9(8) COMP.
05 IOV2L PIC 9(8) COMP.
05 IOV3A USAGE IS POINTER.
05 IOV3AL PIC 9(8) COMP.
05 IOV3L PIC 9(8) COMP.

03 SENDMSG-BUFFER1 PIC X(16).
03 SENDMSG-BUFFER2 PIC X(16).
03 SENDMSG-BUFFER3 PIC X(16).
03 SENDMSG-BUFNO PIC 9(8) COMP.

PROCEDURE DIVISION USING L1.

SET NAME TO NULLS.
SET NAME-LEN TO NULLS.
SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
MOVE 3 TO SENDMSG-BUFNO.
SET IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.
MOVE 0 TO IOV1AL.
MOVE LENGTH OF SENDMSG-BUFFER1 TO IOV1L.
SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.
MOVE 0 TO IOV2AL.
MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
MOVE 0 TO IOV3AL.
MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.
SET ACCRIGHTS TO NULLS.
SET ACCRLEN TO NULLS.
MOVE 0 TO FLAGS.
MOVE SPACES TO SENDMSG-BUFFER1.
MOVE SPACES TO SENDMSG-BUFFER2.
MOVE SPACES TO SENDMSG-BUFFER3.

CALL ’EZASOKET’ USING SOC-FUNCTION MSG FLAGS ERRNO RETCODE.

Figure 112. SENDMSG call instruction example

Chapter 8. Sockets extended application programming interface (API) 203

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Parameter values set by the application
S A value or the address of a halfword binary number specifying the socket

descriptor.

MSG A pointer to an array of message headers from which messages are sent.

Field Description

NAME On input, a pointer to a buffer where the sender’s address is stored
upon completion of the call.

NAME-LEN
On input, a pointer to the size of the address buffer that is filled in
on completion of the call.

IOV On input, a pointer to an array of three fullword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer

Fullword 2
Reserved

Fullword 3
A pointer to the length of the data buffer referenced in
Fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number
of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword field containing the following:

Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

204 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter values returned by the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 Check ERRNO for an error code.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address
parameter. The destination address allows you to use the SENDTO call to send
datagrams on a UDP socket, regardless of whether the socket is connected.

The FLAGS parameter allows you to:

v Send out-of-band data such as interrupts, aborts, and data marked as urgent.

v Suppress use of local routing tables. This implies that the caller takes control of
routing, which requires writing network software.

For datagram sockets SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes, with
the number of bytes sent returned in RETCODE. Therefore, programs using stream
sockets should place SENDTO in a loop that repeats the call until all data has been
sent.

Note: See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC
input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Chapter 8. Sockets extended application programming interface (API) 205

Figure 113 shows an example of SENDTO call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left-aligned and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket sending
the data.

FLAGS
A fullword field that returns one of the following:

Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band
data can be read if the SO-OOBINLINE
option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be
the size specified in NBYTE.

NAME Specifies the socket name structure as follows:

FAMILY
A halfword binary field containing the addressing family. For TCP/IP
the value must be 2, indicating AF_INET.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDTO’.
01 S PIC 9(4) BINARY.
01 FLAGS. PIC 9(8) BINARY.
01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.
01 OOB PIC 9(8) BINARY VALUE IS 1.
01 DONT-ROUTE PIC 9(8) BINARY VALUE IS 4.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

BUF NAME ERRNO RETCODE.

Figure 113. SENDTO call instruction example

206 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PORT A halfword binary field containing the port number bound to the
socket.

IP-ADDRESS
A fullword binary field containing the socket’s 32-bit internet
address.

RESERVED
Specifies eight-byte reserved field. This field is required, but not
used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 Check ERRNO for an error code

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT
can be called only for sockets in the AF_INET domain.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTLEN parameter must be set to the size
of the data pointed to by OPTVAL.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 114 on page 208 shows an example of SETSOCKOPT call instructions.

Chapter 8. Sockets extended application programming interface (API) 207

|

|
|

|
|
|
|

|

|||

||

||

||

|
|
|

||

||

||

||
|
|

|
|

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'SETSOCKOPT'. The field is left-aligned
and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME
Input parameter. See Table 14 on page 209 below for a list of the options
and their unique requirements. See Appendix C,
“GETSOCKOPT/SETSOCKOPT command values” on page 275 for the
numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore
character. Fields representing the option name should contain
dashes instead.

OPTVAL
Input parameter. Contains data that further defines the option specified in
OPTNAME. See Table 14 on page 209 for a list of the options and their
unique requirements.

OPTLEN
Input parameter. A fullword binary field specifying the length of the data
specified in OPTVAL. See Table 14 on page 209 for how to determine the
value of OPTLEN.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B, “Return codes” on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SETSOCKOPT’.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 OPTVAL PIC 9(8) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

Figure 114. SETSOCKOPT call instruction example

208 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

||

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

||
||
||

Table 14. OPTNAME options for SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

IP_ADD_MEMBERSHIP

Use this option to enable an
application to join a multicast group
on a specific interface. An interface
has to be specified with this option.
Only applications that want to receive
multicast datagrams need to join
multicast groups.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK).
The IP_MREQ structure
contains a 4-byte IPv4
multicast address followed by a
4-byte IPv4 interface address.

See hlq.SEZAINST(CBLOCK)
for the PL/1 example of
IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR PIC 9(8)

BINARY.
05 IMR-INTERFACE PIC 9(8)

BINARY.

N/A

IP_DROP_MEMBERSHIP

Use this option to enable an
application to exit a multicast group.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK).
The IP_MREQ structure
contains a 4-byte IPv4
multicast address followed by a
4-byte IPv4 interface address.

See hlq.SEZAINST(CBLOCK)
for the PL/1 example of
IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR PIC 9(8)

BINARY.
05 IMR-INTERFACE PIC 9(8)

BINARY.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the
IPV4 interface address used for
sending outbound multicast
datagrams from the socket
application.
Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field
containing an IPv4
interface address.

Chapter 8. Sockets extended application programming interface (API) 209

||

||
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

Table 14. OPTNAME options for SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

IP_MULTICAST_LOOP

Use this option to control or
determine whether a copy of
multicast datagrams are looped back
for multicast datagrams sent to a
group to which the sending host itself
belongs. The default is to loop the
datagrams back.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will
contain a 1.

If disabled, will
contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast
datagrams. The default value is ’01’x
meaning that multicast is available
only to the local subnet.

A 1-byte binary field containing
the value of ’00’x to ’FF’x.

A 1-byte binary field
containing the value
of ’00’x to ’FF’x.

SO_BROADCAST

Use this option to set or determine
whether a program can send
broadcast messages over the socket
to destinations that can receive
datagram messages. The default is
disabled.

Note: This option has no meaning
for stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

SO_ERROR

Use this option to request pending
errors on the socket or to check for
asynchronous errors on connected
datagram sockets or for other errors
that are not explicitly returned by one
of the socket calls. The error status is
clear afterwards.

N/A A 4-byte binary field
containing the most
recent ERRNO for
the socket.

210 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|

|
|

|
|

|

|
|
|
|
|
|
|

||
|
|
|

Table 14. OPTNAME options for SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_LINGER

Use this option to control or
determine how TCP/IP processes
data that has not been transmitted
when a CLOSE is issued for the
socket. The default is disabled.

Note: This option has meaning only
for stream sockets.

When SO_LINGER is set and
CLOSE is called, the calling program
is blocked until the data is
successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the
CLOSE returns without blocking the
caller, and TCP/IP continues to
attempt to send data for a specified
time. This usually allows sufficient
time to complete the data transfer.

Use of the SO_LINGER option does
not guarantee successful completion
because TCP/IP only waits the
amount of time specified in OPTVAL
for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value
to enable and set to 0 to
disable this option. Set
LINGER to the number of
seconds that TCP/IP lingers
after the CLOSE is issued.

Contains an 8-byte
field containing two
4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero returned
in ONOFF =
enabled, a 0 =
disabled. LINGER
indicates the
number of seconds
that TCP/IP will try
to send data after
the CLOSE is
issued.

SO_KEEPALIVE

Use this option to set or determine
whether the keepalive mechanism
periodically sends a packet on an
otherwise idle connection for a
stream socket.

The default is disabled.

When activated, the keepalive
mechanism periodically sends a
packet on an otherwise idle
connection. If the remote TCP does
not respond to the packet or to
retransmissions of the packet, the
connection is terminated with the
error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

Chapter 8. Sockets extended application programming interface (API) 211

|

||
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|

Table 14. OPTNAME options for SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_OOBINLINE

Use this option to control or
determine whether out-of-band data
is received.
Note: This option has meaning only
for stream sockets.

When this option is set, out-of-band
data is placed in the normal data
input queue as it is received and is
available to a RECV or a
RECVFROM even if the OOB flag is
not set in the RECV or the
RECVFROM.

When this option is disabled,
out-of-band data is placed in the
priority data input queue as it is
received and is available to a RECV
or a RECVFROM only when the OOB
flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

SO_RCVBUF

Use this option to control or
determine the size of the data portion
of the TCP/IP receive buffer.

The size of the data portion of the
receive buffer is protocol-specific,
based on the following values prior to
any SETSOCKOPT call:

v TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a
TCP Socket

v UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a
UDP Socket

v The default of 65 535 for a raw
socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP
receive buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains
a positive value
indicating the size of
the data portion of
the TCP/IP receive
buffer.

If disabled, contains
a 0.

212 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

Table 14. OPTNAME options for SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_REUSEADDR

Use this option to control or
determine whether local addresses
are reused. The default is disabled.
This alters the normal algorithm used
with BIND. The normal BIND
algorithm allows each Internet
address and port combination to be
bound only once. If the address and
port have been already bound, then a
subsequent BIND will fail and result
error will be EADDRINUSE.

When this option is enabled, the
following situations are supported:

v A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one
time per port.

v A server with active client
connections can be restarted and
can bind to its port without having
to close all of the client
connections.

v For datagram sockets, multicasting
is supported so multiple bind() calls
can be made to the same class D
address and port number.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains
a 1.

If disabled, contains
a 0.

SO_SNDBUF

Use this option to control or
determine the size of the data portion
of the TCP/IP send buffer. The size of
the TCP/IP send buffer is protocol
specific and is based on the
following:

v The TCPSENDBufrsize keyword
on the TCPCONFIG statement in
the PROFILE.TCPIP data set for a
TCP socket

v The UDPSENDBufrsize keyword
on the UDPCONFIG statement in
the PROFILE.TCPIP data set for a
UDP socket

v The default of 65 535 for a raw
socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP
send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains
a positive value
indicating the size of
the data portion of
the TCP/IP send
buffer.

If disabled, contains
a 0.

Chapter 8. Sockets extended application programming interface (API) 213

|

||
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

Table 14. OPTNAME options for SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL
(input)

GETSOCKOPT,
OPTVAL (output)

SO_TYPE

Use this option to return the socket
type.

N/A A 4-byte binary field
indicating the
sockets type:

X’1’ =
SOCK_STREAM

X’2’ =
SOCK_DGRAM

X’3’ = SOCK_RAW

TCP_NODELAY

TCP_NODELAY toggles the use of
the Nagle algorithm (RFC 896) for all
data sent over the socket. Under
most circumstances, TCP sends data
when the application performs the
send request. However, when
outstanding data has not yet been
acknowledged and the application
performs subsequent send requests
for small amounts of data, TCP
gathers these requests into a single
packet and sends them once an
acknowledgement is received.

For certain types of applications, such
as ones that send a stream of small
data requests without any intervening
replies from the partner application,
this gathering of output can cause
significant delays. For these types of
applications, disabling the Nagle
algorithm improves response time.
When the Nagle algorithm is
disabled, TCP can send small
amounts of data before the
acknowledgement for previously sent
data is received.
Note: To set TCP_NODELAY
OPNAME value for COBOL
programs:

01 TCP-NODELAY-VAL PIC 9(10)
COMP VALUE 2147483649.

01 TCP-NODELAY-REDEF
REDEFINES TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.
05 TCP-NODELAY-BITSTREAM

PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or
nonzero.

A 4-byte binary field.

If enabled, contains
a 0.

If disabled, contains
a 1.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests prior to breaking

214 z/OS V1R4.0 CS: IP CICS Sockets Guide

|

||
|
|
|

|

|
|

||
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|

|
|

|
|

the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines the
direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system will wait before releasing the connection.
For example, with a LINGER value of 30 seconds, system resources (including the
IMS or CICS transaction) will remain in the system for up to 30 seconds after the
CLOSE call is issued. In high volume, transaction-based systems like CICS and
IMS, this can impact performance severely.

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection
can be closed immediately, rather than waiting for the 30-second delay.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls
pending, see Table 15 to determine the effects of this operation on the outstanding
socket calls.

Table 15. Effect of SHUTDOWN socket call

Socket calls in
local program

Local program Remote program

SHUTDOWN
SEND

SHUTDOWN
RECEIVE

SHUTDOWN
RECEIVE

SHUTDOWN
SEND

Write calls Error number
EPIPE on first
call

Error number
EPIPE on
second call*

Read calls Zero length
return code

Zero length
return code

* If you issue two write calls immediately, both might be successful, and an EPIPE error
number might not be returned until a third write call is issued.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 115 on page 216 shows an example of SHUTDOWN call instructions.

Chapter 8. Sockets extended application programming interface (API) 215

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-aligned
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
shutdown.

HOW A fullword binary field. Set to specify whether all or part of a connection is
to be shut down. The following values can be set:

Value Description

0 (END-FROM)
Ends further receive operations.

1 (END-TO) Ends further send operations.

2 (END-BOTH)
Ends further send and receive operations.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SHUTDOWN’.
01 S PIC 9(4) BINARY.
01 HOW PIC 9(8) BINARY.
01 END-FROM PIC 9(8) BINARY VALUE 0.
01 END-TO PIC 9(8) BINARY VALUE 1.
01 END-BOTH PIC 9(8) BINARY VALUE 2.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 115. SHUTDOWN call instruction example

216 z/OS V1R4.0 CS: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 116 shows an example of SOCKET call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing 'SOCKET'. The field is left-aligned and
padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP the value is
set to 2 for AF_INET.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

PROTO
A fullword binary field set to the protocol to be used for the socket. If this

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’SOCKET’.
01 AF PIC 9(8) COMP VALUE 2.
01 SOCTYPE PIC 9(8) BINARY.
01 STREAM PIC 9(8) BINARY VALUE 1.
01 DATAGRAM PIC 9(8) BINARY VALUE 2.

01 PROTO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION AF SOCTYPE

PROTO ERRNO RETCODE.

Figure 116. SOCKET call instruction example

Chapter 8. Sockets extended application programming interface (API) 217

|
|
|
|
|
|
|
|
|
|
|
|
|
|

field is set to 0, the default protocol is used. For streams, the default is
TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hlq.etc.proto data set.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
> or = 0

Contains the new socket descriptor
−1 Check ERRNO for an error code

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data that it obtained from the concurrent server. See “GIVESOCKET” on page 172
for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls
such as GETSOCKOPT, which require the S (socket descriptor) parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 117 on page 219 shows an example of TAKESOCKET call instructions.

218 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-aligned
and padded to the right with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The
socket to be taken is passed by the concurrent server.

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS and
IMS, these parameters are passed by the Listener program to the program
that issues the TAKESOCKET call.

v In CICS, the information is obtained using EXEC CICS RETRIEVE.

v In IMS, the information is obtained by issuing GU TIM.

DOMAIN
A fullword binary field set to the domain of the program giving the
socket. It is always 2, indicating AF_INET.

NAME Specifies an 8-byte character field set to the MVS address space
identifier of the program that gave the socket.

TASK Specifies an 8-byte character field set to the task identifier of the
task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
> or = 0

Contains the new socket descriptor

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’TAKESOCKET’.
01 SOCRECV PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SOCRECV CLIENT

ERRNO RETCODE.

Figure 117. TAKESOCKET call instruction example

Chapter 8. Sockets extended application programming interface (API) 219

−1 Check ERRNO for an error code

TERMAPI
This call terminates the session created by INITAPI.

In the CICS environment, the use of TERMAPI is not recommended. CICS task
termination processing automatically performs the functions of TERMAPI. A CICS
application program should only issue TERMAPI if there is a particular need to
terminate the session before task termination.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 118 shows an example of TERMAPI call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left-aligned and
padded to the right with blanks.

WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’TERMAPI’.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION.

Figure 118. TERMAPI call instruction example

220 z/OS V1R4.0 CS: IP CICS Sockets Guide

send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
will be returned in RETCODE. Therefore, programs using stream sockets should
place this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC output
data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 119 shows an example of WRITE call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left-aligned and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be transmitted.

BUF Specifies the buffer containing the data to be transmitted.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’WRITE’.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 119. WRITE call instruction example

Chapter 8. Sockets extended application programming interface (API) 221

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
≥0 A successful call. A return code greater than zero indicates the

number of bytes of data written.
−1 Check ERRNO for an error code.

WRITEV
The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”
under “Environmental restrictions and programming
requirements” on page 143.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the
primary address space

Figure 120 on page 223 shows an example of WRITEV call instructions.

222 z/OS V1R4.0 CS: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application
S A value or the address of a halfword binary number specifying the

descriptor of the socket from which the data is to be written.

IOV An array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:

Fullword 1
The address of a data buffer.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in Fullword 1.

IOVCNT
A fullword binary field specifying the number of data buffers provided for this
call.

WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE ’WRITE’.
01 S PIC 9(4) BINARY.
01 IOVCNT PIC 9(4) BINARY.

01 MSG-HDR.
03 MSG_NAME POINTER.
03 MSG_NAME_LEN POINTER.
03 IOVPTR POINTER.
03 IOVCNT POINTER.
03 MSG_ACCRIGHTS PIC X(4).
03 MSG_ACCRIGHTS_LEN PIC 9(4) BINARY.

01 IOV.
03 BUFFER-ENTRY OCCURS N TIMES.

05 BUFFER_ADDR POINTER.
05 RESERVED PIC X(4).
05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS-OF BUFFER1.
SET BUFFER-LENGTH(1) TO LENGTH-OF BUFFER1.
SET BUFFER-POINTER(2) TO ADDRESS-OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH-OF BUFFER2.
" " " " "
" " " " "
SET BUFFER-POINTER(n) TO ADDRESS-OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH-OF BUFFERn.

CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 120. WRITEV call instruction example

Chapter 8. Sockets extended application programming interface (API) 223

Parameters Returned by the Application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See Appendix B. Return codes on page 261 for information about
ERRNO return codes.

RETCODE
A fullword binary field.

Value Meaning

<0 Error. Check ERRNO.

0 Connection partner has closed connection.

>0 Number of bytes sent.

Using data translation programs for socket call interface
In addition to the socket calls, you can use the following utility programs to translate
data:

Data translation
TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its
subsystems use EBCDIC data notation. In situations where data must be translated
from one notation to the other, you can use the following utility programs:
v EZACIC04—Translates EBCDIC data to ASCII data
v EZACIC05—Translates ASCII data to EBCDIC data

Bit string processing
In C-language, bit strings are often used to convey flags, switch settings, and so on;
TCP/IP makes frequent uses of bit strings. However, since bit strings are difficult to
decode in COBOL, TCP/IP includes:

v EZACIC06—Translates bit-masks into character arrays and character arrays into
bit-masks.

v EZACIC08—Interprets the variable length address list in the HOSTENT structure
returned by GETHOSTBYNAME or GETHOSTBYADDR.

224 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZACIC04

The EZACIC04 program is used to translate EBCDIC data to ASCII data.

Figure 121 shows an example of EZACIC04 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

OUT-BUFFER
A buffer that contains the following:
v When called – EBCDIC data
v Upon return – ASCII data

LENGTH
Specifies the length of the data to be translated.

WORKING-STORAGE SECTION.
01 OUT-BUFFER PIC X(length of output).
01 LENGTH PIC 9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZACIC04’ USING OUT-BUFFER LENGTH.

Figure 121. EZACIC04 call instruction example

Chapter 8. Sockets extended application programming interface (API) 225

EZACIC05

The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC
data is required by COBOL, PL/1, and assembler language programs.

Figure 122 shows an example of EZACIC05 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

IN-BUFFER
A buffer that contains the following:
v When called – ASCII data
v Upon return – EBCDIC data

LENGTH
Specifies the length of the data to be translated.

WORKING-STORAGE SECTION.
01 IN-BUFFER PIC X(length of output)
01 LENGTH PIC 9(8) BINARY VALUE

PROCEDURE DIVISION.
CALL ’EZACIC05’ USING IN-BUFFER LENGTH.

Figure 122. EZACIC05 call instruction example

226 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZACIC06

The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, you might
want to use the assembler language program EZACIC06 to translate them to
character strings to be used with the SELECT call.

Figure 123 shows an example of EZACIC06 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

TOKEN
Specifies a 16-character identifier. This identifier is required and it must be
the first parameter in the list.

CH-MASK
Specifies the character array where nn is the maximum number of sockets
in the array.

BIT-MASK
Specifies the bit string to be translated for the SELECT call. The bits are
ordered right to left with the rightmost bit representing socket 0. The socket
positions in the character array are indexed starting with 1, making socket 0
index number 1 in the character array. You should keep this in mind when
turning character positions on and off.

WORKING-STORAGE SECTION.
01 CHAR-MASK.

05 CHAR-STRING PIC X(nn).

01 CHAR-ARRAY REDEFINES CHAR-MASK.
05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

10 CHAR-ENTRY PIC X(1).
01 BIT-MASK.

05 BIT-ARRAY-FWDS PIC 9(16) COMP.

01 BIT-FUNCTION-CODES.
05 CTOB PIC X(4) VALUE ’CTOB’.
05 BTOC PIC X(4) VALUE ’BTOC’.

01 BIT-MASK-LENGTH PIC 9(8) COMP VALUE 50 .

PROCEDURE CALL (to convert from character to binary)
CALL ’EZACIC06’ USING CTOB

BIT-MASK
CHAR-MASK
BIT-MASK-LENGTH
RETCODE.

PROCEDURE CALL (to convert from binary to character)
CALL ’EZACIC06’ USING BTOC

BIT-MASK
CHAR-MASK
BIT-MASK-LENGTH
RETCODE.

Figure 123. EZACIC06 call instruction example

Chapter 8. Sockets extended application programming interface (API) 227

COMMAND
BTOC—Specifies bit string to character array translation.

CTOB—Specifies character array to bit string translation.

BIT-MASK-LENGTH
Specifies the length of the bit-mask.

RETCODE
A binary field that returns one of the following:

Value Description
0 Successful call
−1 Check ERRNO for an error code

Examples: If you want to use the SELECT call to test sockets 0, 5, and 9, and
you are using a character array to represent the sockets, you must set the
appropriate characters in the character array to 1. In this example, index positions
1, 6 and 10 in the character array are set to 1. Then you can call EZACIC06 with
the COMMAND parameter set to CTOB. When EZACIC06 returns, BIT-MASK
contains a fullword with bits 0, 5, and 9 (numbered from the right) turned on as
required by the SELECT call. These instructions process the bit string shown in the
following example.
MOVE ZEROS TO CHAR-STRING.
MOVE '1'TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(10).
CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK

BIT-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.
MOVE TO BIT-MASK.
CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK

BIT-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

FROM 1 BY 1 UNTIL IDX EQUAL 10.

TEST-SOCKET.
IF CHAR-ENTRY(IDX) EQUAL '1'

THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
ELSE NEXT SENTENCE.

TEST-SOCKET-EXIT.
EXIT.

228 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZACIC08

The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP host can have
multiple alias names and host internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names and
internet addresses in the HOSTENT structure that is returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/1 or assembler language, the HOSTENT structure can be
processed in a relatively straight-forward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACIC08 subroutine to process it for you.

It works as follows:

v GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that
indirectly addresses the lists of alias names and internet addresses.

v Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program calls
EZACIC08 and passes it the address of the HOSTENT structure. EZACIC08
processes the structure and returns the following:

1. The length of host name, if present

2. The host name

3. The number of alias names for the host

4. The alias name sequence number

5. The length of the alias name

6. The alias name

7. The host internet address type, always 2 for AF_INET

8. The host internet address length, always 4 for AF_INET

9. The number of host internet addresses for this host

10. The host internet address sequence number

11. The host internet address

v If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host internet address (steps 3 and 9 above), the application
program should repeat the call to EZACIC08 until all alias names and host
internet addresses have been retrieved.

Figure 124 on page 230 shows an example of EZACIC08 call instructions.

Chapter 8. Sockets extended application programming interface (API) 229

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 145.

Parameter values set by the application

HOSTENT-ADDR
This fullword binary field must contain the address of the HOSTENT
structure (as returned by the GETHOSTBYxxxx call). This variable is the
same as the variable HOSTENT in the GETHOSTBYADDR and
GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACIC08 to index the list of alias names.
When EZACIC08 is called, it adds one to the current value of
HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTALIAS-SEQ number
returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACIC08 to index the list of IP addresses.
When EZACIC08 is called, it adds one to the current value of
HOSTADDR-SEQ and uses the resulting value to index into the table of IP
addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTADDR-SEQ number
returned by the previous call.

Parameter values returned to the application

WORKING-STORAGE SECTION.

01 HOSTENT-ADDR PIC 9(8) BINARY.
01 HOSTNAME-LENGTH PIC 9(4) BINARY.
01 HOSTNAME-VALUE PIC X(255)
01 HOSTALIAS-COUNT PIC 9(4) BINARY.
01 HOSTALIAS-SEQ PIC 9(4) BINARY.
01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
01 HOSTALIAS-VALUE PIC X(255)
01 HOSTADDR-TYPE PIC 9(4) BINARY.
01 HOSTADDR-LENGTH PIC 9(4) BINARY.
01 HOSTADDR-COUNT PIC 9(4) BINARY.
01 HOSTADDR-SEQ PIC 9(4) BINARY.
01 HOSTADDR-VALUE PIC 9(8) BINARY.
01 RETURN-CODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

CALL ’EZASOKET’ USING ’GETHOSTBYxxxx’
HOSTENT-ADDR
RETCODE.

Where xxxx is ADDR or NAME.

CALL ’EZACIC08’ USING HOSTENT-ADDR HOSTNAME-LENGTH
HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
HOSTALIAS-LENGTH HOSTALIAS-VALUE
HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

Figure 124. EZAZIC08 call instruction example

230 z/OS V1R4.0 CS: IP CICS Sockets Guide

HOSTNAME-LENGTH
This halfword binary field contains the length of the host name (if host
name was returned).

HOSTNAME-VALUE
This 255-byte character string contains the host name (if host name was
returned).

HOSTALIAS-COUNT
This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ
This halfword binary field is the sequence number of the alias name
currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently
found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this
instance of the call. The length of the alias name is contained in
HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY
type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host internet address
currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,
HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host internet addresses
returned by this instance of the call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host internet
address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host internet address.

RETURN-CODE
This fullword binary field contains the EZACIC08 return code:

Value Description
0 Successful completion
-1 Invalid HOSTENT address

Chapter 8. Sockets extended application programming interface (API) 231

232 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix A. Original COBOL application programming
interface (EZACICAL)

This appendix describes the first COBOL API provided with TCP/IP Version 2.2.1 for
MVS. It is referred to as the EZACICAL API to distinguish it from the Sockets
Extended API. (EZACICAL is the routine that is called for this API.)

It gives the format of each socket call and describes the call parameters. It starts
with guidance on compiling COBOL programs.

Using the EZACICAL or Sockets Extended API
The EZACICAL API (described in this appendix) and the Sockets Extended API
(described in Chapter 8) both provide sockets APIs for COBOL, PL/I, and
Assembler language programs.

The Sockets Extended API is recommended because it has a simpler set of
parameters for each call.

You might want to use the EZACICAL API if you have existing TCP/IP Version
2.2.1. for MVS COBOL/assembler language programs that require maintenance or
modification.

COBOL compilation
The procedure that you use to compile a (non-CICS TCP/IP) source VS COBOL II
CICS program can be used for CICS TCP/IP programs, but it needs some
modification.

The modified JCL procedure is shown in Figure 125 on page 234. The procedure
contains 3 steps:

1. TRN translates the COBOL program

2. COB compiles the translated COBOL program

3. LKED link-edits the final module to a LOADLIB

© Copyright IBM Corp. 1994, 2002 233

//CICSRS2C JOB (999,POK),’CICSRS2’,NOTIFY=CICSRS2,
// CLASS=A,MSGCLASS=T,TIME=1439,
// REGION=5000K,MSGLEVEL=(1,1)
//DFHEITVL PROC SUFFIX=1$,
// INDEX=’CICS410’,
// INDEX2=’CICS410’,
// OUTC=*,
// REG=2048K,
// LNKPARM=’LIST,XREF’,
// WORK=SYSDA
//TRN EXEC PGM=DFHECP&SUFFIX,
// PARM=’COBOL2’,
// REGION=®
//STEPLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(,PASS),UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//*
//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM=’NODYNAM,LIB,OBJECT,RENT,RES,APOST,MAP,XREF’
//STEPLIB DD DSN=COBOL.V1R3M2.COB2COMP,DISP=SHR
//SYSLIB DD DSN=&INDEX..SDFHCOB,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=CICSRS2.MAPA.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=&WORK,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT4 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT7 DD UNIT=&WORK,SPACE=(460,(350,100))
//* X
//*
//LKED EXEC PGM=IEWL,REGION=®,
// PARM=’&LNKPARM’,COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR
// DD DSN=SYS1.COBOL.V1R3M2.COB2CICS,DISP=SHR
// DD DSN=COBOL.V1R3M2.COB2LIB,DISP=SHR
// DD DSN=hlq.SEZATCP,DISP=SHR
//SYSLMOD DD DSN=CICSRS2.CICS410.PGMLIB,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=&OUTC
//* X
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
// PEND
//APPLPROG EXEC DFHEITVL
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS2.JCL.DATA(SISSRR1C)
//LKED.SYSIN DD *

INCLUDE SYSLIB(EZACICAL)
NAME SISSRR1C(R)

/*

Figure 125. Modified JCL for COBOL compilation

234 z/OS V1R4.0 CS: IP CICS Sockets Guide

The EZACICAL API
The EZACICAL API can be used by assembler language, COBOL, or PL/I programs
and is invoked by calling the EZACICAL routine. Although the calls to this routine
perform the same function as the C language calls described in Chapter 7, the
parameters are presented differently because of the differences in the languages.
The equivalent to the return code provided by all C function calls is found in a
decimal value parameter included as the last parameter variable.

COBOL
The following is the ‘EZACICAL’ call format for COBOL:

TOKEN
A 16-character field with the value 'TCPIPIUCVSTREAMS'

COMMAND
A binary halfword of value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,
described on page 237, has two such parameters: S (socket), which is a
halfword binary, and NAME, which is a structure specifying a port name.

ERRNO
There is an error number in this field if the RETCODE is negative. This field
is used in most, but not all, of the calls. It corresponds to the global errno
variable in C.

RETCODE
A fullword binary variable containing the code returned by the EZACICAL
call. This value corresponds to the normal return value of a C function.

PL/I
The following is the ‘EZACICAL’ call format for PL/I:

TOKEN
A 16-character field with the value 'TCPIPIUCVSTREAMS'

COMMAND
A binary halfword of value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,
described on page 237, has two such parameters: S (socket), which is a
halfword binary, and NAME, which is a structure specifying a port name.

ERRNO
There is an error number in this field if the RETCODE is negative. This field
is used in most, but not all, of the calls. It corresponds to the global errno
variable in C.

MM CALL ‘EZACICAL’ USING TOKEN COMMAND parm1, parm2, ... ERRNO RETCODE. MN

MM CALL EZACICAL (TOKEN COMMAND parm1, parm2, ... ERRNO RETCODE); MN

Appendix A. Original COBOL application programming interface (EZACICAL) 235

RETCODE
A fullword binary variable containing the code returned by the EZACICAL
call. This value corresponds to the normal return value of a C function.

Assembler language
The following is the EZACICAL call format for assembler language:

The parameter descriptions in this section are written using the COBOL language
syntax and conventions. For assembler language, use the following conversions:
COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

COBOL and assembler language socket calls
The rest of this chapter describes the EZACICAL API call formats.

The descriptions assume you are using VS COBOL II. If you are using an earlier
version, the picture clauses should read COMP rather than BINARY.

The following abbreviations are used:

H Halfword

F Fullword

D Doubleword

CLn Character format, length n bytes

XLn Hexadecimal format, length n bytes

ACCEPT
This call functions in the same way as the equivalent call described on page 146.
The format of the COBOL call for ACCEPT is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
ZERO-FWRD F PIC 9(8) BINARY
NEW-S F PIC 9(8) BINARY

MM CALL EZACICAL,(TOKEN,COMMAND, parm1, parm2, ... ERRNO RETCODE),VL MN

CALL ‘EZACICAL’ USING TOKEN COMMAND S ZERO-FWRD NEW-S NAME ERRNO RETCODE.

236 z/OS V1R4.0 CS: IP CICS Sockets Guide

NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 1 for the ACCEPT command

S The descriptor of the local socket on which the connection is accepted

ZERO-FWRD
Set to zeros

NEW-S
Set to −1. The system will return the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application
NAME Structure giving the name of the port to which the new socket is connected

Internet Family
AF-INET is always returned

Port The port address of the new socket

Internet Address
The IP address of the new socket

Zeros Set to binary zeros or LOW VALUES

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
The socket number for new socket is returned. A RETCODE of −1 indicates
an error.

BIND
This call functions in the same way as the equivalent call described on page 148.
The format of the COBOL call for the BIND function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 237

S H PIC 9(4) BINARY
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 2 for the BIND command

S The descriptor of the local socket to be bound

NAME Structure giving the name of the port to which the socket is to be bound,
consisting of:

Internet Family
Must be set to 2 (AF-INET)

Port The local port address to which the socket is to be bound

Internet Address
The local IP address to which the socket is to be bound

Zeros Set to binary zeros or low values

Parameter values returned to the application
NAME (Port)

If Port was set to 0, the system returns an available port.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

CLOSE
This call functions in the same way as the equivalent call described on page 150.
The format of the COBOL call for the CLOSE function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
ERRNO F PIC S9(8) BINARY
RETCODE F PIC S9(8) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO ERRNO RETCODE.

238 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 3 for the CLOSE command

S The descriptor of the socket to be closed

DZERO
Set to binary zeros or low values

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

CONNECT
This call functions in the same way as the equivalent call described on page 151.
The format of the COBOL call for the CONNECT function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 4 for the CONNECT command

S The descriptor of the local socket to be used to establish a connection

NAME Structure giving the name of the port to which the socket is to be
connected, consisting of:

Internet Family
Must be set to 2 (AF-INET)

CALL ‘EZACICAL’ USING TOKEN COMMAND S NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 239

Port The remote port number to which the socket is to be connected

Internet Address
The remote IP address to which the socket is to be connected

Zeros Set to binary zeros or low values

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

FCNTL
This call functions in the same way as the equivalent call described on page 154.
The format of the COBOL call for the FCNTL function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
CMD F PIC 9(8) BINARY
ARG F PIC 9(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 5 for the FCNTL command

S The socket descriptor whose FNDELAY flag is to be set or queried

CMD Set a value of 3 to query the FNDELAY flag of socket s. This is equivalent
to setting the cmd parameter to F-GETFL in the fcntl() C call.

Set a value of 4 to set the FNDELAY flag of socket s. This is equivalent to
setting the cmd parameter to F-SETFL in the fcntl() C call.

ARG If CMD is set to 4, setting ARG to 4 will set the FNDELAY flag; setting ARG
to 3 will reset the FNDELAY flag.

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

CALL ‘EZACICAL’ USING TOKEN COMMAND S CMD ARG ERRNO RETCODE.

240 z/OS V1R4.0 CS: IP CICS Sockets Guide

RETCODE
If CMD was set to 3, a bit mask is returned. If CMD was set to 4, a
successful call is indicated by 0 in this field. In both cases, a RETCODE of
−1 indicates an error.

GETCLIENTID
This call functions in the same way as the equivalent call described on page 155.
The format of the COBOL call for the GETCLIENTID function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
CLIENTID STRUCTURE:
Domain F PIC 9(8) BINARY
Name CL8 PIC X(8)
Task CL8 PIC X(8)
Reserved XL20 PIC X(20)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 30 for the GETCLIENTID command

HZERO
Set to binary zeros or LOW VALUES

DZERO
Set to binary zeros or LOW VALUES

CLIENTID

Domain
Must be set to 2 (AF-INET)

Parameter values returned to the application
CLIENTID

Structure identifying the client as follows:

Name Address space identification is returned

Task Task identification is returned

Reserved
Zeros or LOW VALUES are returned

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO CLIENTID ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 241

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

GETHOSTID
This call functions in the same way as the equivalent call described on page 157.
The format of the COBOL call for the GETHOSTID function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 7 for the GETHOSTID command

HZERO
Set to binary zeros or low values

DZERO
Set to binary zeros or low values

Parameter values returned to the application
ERRNO

This field is not used

RETCODE
Returns a fullword binary field containing the 32-bit internet address of the
host. A value of -1 is a call failure, probably indicating that an INITAPI call
has not been issued. There is no ERRNO parameter for this call.

GETHOSTNAME
This call functions in the same way as the equivalent call described on page 159.
The format of the COBOL call for the GETHOSTNAME function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO ERRNO RETCODE.

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO NAMELEN NAME ERRNO RETCODE.

242 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
DZERO D PIC X(8)
NAMELEN F PIC 9(8) BINARY
NAME NAMELEN

or larger
NAMELEN or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 8 for the GETHOSTNAME command

HZERO
Set to 0

DZERO
Set to binary zeros or low values

Parameter values returned to the application
NAMELEN

The length of host name is returned. This cannot exceed 255.

NAME The host name returned from the call

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

GETPEERNAME
This call functions in the same way as the equivalent call described on page 163.
The format of the COBOL call for the GETPEERNAME function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
NAME CL16 PIC X(16)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 243

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 9 for the GETPEERNAME command

S The descriptor of the local socket connected to the requested peer

DZERO
Set to binary zeros or low values

Parameter values returned to the application
NAME The peer name returned from the call

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

GETSOCKNAME
This call functions in the same way as the equivalent call described on page 164.
The format of the COBOL call for the GETSOCKNAME function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
NAME STRUCTURE:
Internet Family H PIC 9(4) BINARY
Port H PIC 9(4) BINARY
Internet Address F PIC 9(8) BINARY
Zeros XL8 PIC X(8)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 10 for the GETSOCKNAME command

S The descriptor of the local socket whose address is required

DZERO
Set to binary zeros or low values

NAME Structure giving the name of the port to which the socket is bound,
consisting of:

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

244 z/OS V1R4.0 CS: IP CICS Sockets Guide

Internet Family
Must be set to 2 (AF-INET).

Port The local port address to which the socket is bound

Internet Address
The local IP address to which the socket is bound

Zeros Set to binary zeros or low values

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

GETSOCKOPT
This call functions in the same way as the equivalent call described on page 165.
The format of the COBOL call for the GETSOCKOPT function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
LEVEL F PIC X(4)
OPTNAME F PIC X(4)
OPTLEN F PIC 9(8) BINARY
OPTVAL CL4 PIC X(4)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 11 for the GETSOCKOPT command

S The descriptor of the socket whose option settings are required

LEVEL
This must be set to X'0000FFFF'.

OPTNAME
Set this field to specify the option to be queried, as shown below. For a
description of these options, see “GETSOCKOPT” on page 165

Value Meaning
X'00000004' SO-REUSEADDR
X'00000020' SO-BROADCAST

CALL ‘EZACICAL’
USING TOKEN COMMAND S LEVEL OPTNAME OPTLEN OPTVAL ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 245

X'00001007' SO-ERROR
X'00000080' SO-LINGER
X'00000100' SO-OOBINLINE
X'00001001' SO-SNDBUF
X'00001008' SO-TYPE
X'80000001' TCP_NODELAY

Parameter values returned to the application
OPTLEN

The length of the option data

OPTVAL
The value of the option. For all options except SO-LINGER, an integer
indicates that the option is enabled, while a 0 indicates it is disabled. For
SO-LINGER, the following structure is returned:

ONOFF F PIC X(4)
LINGER F PIC 9(4)

A nonzero value of ONOFF indicates that the option is enabled, and 0, that
it is disabled. The LINGER value indicates the amount of time to linger after
close.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

GIVESOCKET
This call functions in the same way as the equivalent call described on page 172.
The format of the COBOL call for the GIVESOCKET function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
CLIENTID STRUCTURE:
Domain F PIC 9(8) BINARY
Name CL8 PIC X(8)
Task CL8 PIC X(8)
Reserved XL20 PIC X(20)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 31 for the GIVESOCKET command

CALL ‘EZACICAL’ USING TOKEN COMMAND S CLIENTID ERRNO RETCODE.

246 z/OS V1R4.0 CS: IP CICS Sockets Guide

S The socket descriptor of the socket to be given

CLIENTID
Structure identifying the client ID of this application, as follows:

Domain
Must be set to 2 (AF-INET)

Name Set to the address space identifier obtained from GETCLIENTID

Task Set to blanks

Reserved
Set to binary zeros or low values

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

INITAPI
The format of the COBOL call for the INITAPI function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
MAX-SOCK H PIC 9(4) BINARY
API H PIC 9(4) BINARY
SUBTASK XL8 PIC X(8)
FZERO F PIC 9(8) BINARY
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 0 for the INITAPI command

MAX-SOCK
The maximum number of sockets to be supported in this application. For
performance reasons, this should be one greater than the actual maximum.
This value cannot exceed 2000. The minimum value is 50.

API Must be set to 2, indicating use of the sockets API

SUBTASK
A unique subtask identifier. It should consist of the 7-character CICS task
number and any printable character.

CALL ‘EZACICAL’
USING TOKEN COMMAND FZERO MAX-SOCK API SUBTASK FZERO ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 247

|
|

FZERO
Zeros

Parameter values returned to the application
ERRNO

If RETCODE=0, contains the highest socket number available to this
program.

RETCODE
A return of 0 indicates a successful call. A return of −1 indicates an error.

IOCTL
This call functions in the same way as the equivalent call described on page 177.
The format of the COBOL call for the IOCTL function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
IOCTLCMD F PIC 9(8)
REQARG var var
RETARG var var
ERRNO F PIC S9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND
Must be set to 12 for the IOCTL command

S The descriptor of the socket to be controlled

IOCTLCMD
Set to the command value to be passed to IOCTL. See “IOCTL” on
page 177 for values and descriptions.

REQARG
The request argument associated with the command. See “IOCTL” on
page 177 for a list and description of possible argument values.

Parameter values returned to the application
RETARG

The return argument. See “IOCTL” on page 177 for a description of the
return argument for each command.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

CALL ‘EZACICAL’
USING TOKEN COMMAND S IOCTLCMD REQARG RETARG ERRNO RETCODE.

248 z/OS V1R4.0 CS: IP CICS Sockets Guide

RETCODE
A return value of 0 indicates a successful call. A return value of −1 indicates
an error.

LISTEN
This call functions in the same way as the equivalent call described on page 181.
The format of the COBOL call for the LISTEN function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
FZERO F PIC 9(8) BINARY
BACKLOG F PIC 9(8) BINARY
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 13 for the LISTEN command

S The descriptor of the socket that is going to listen for incoming connection
requests

FZERO
Set to binary zeros or low values

BACKLOG
Set to the number of connection requests to be queued

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return value of 0 indicates a successful call. A return value of −1 indicates
an error.

READ
This call functions in the same way as the equivalent call described on page 182.
The format of the COBOL call for the READ function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

CALL ‘EZACICAL’ USING TOKEN COMMAND S FZERO BACKLOG ERRNO RETCODE.

CALL ‘EZACICAL’
USING TOKEN COMMAND S DZERO NBYTE FILLER BUF ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 249

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
DZERO D PIC X(8)
NBYTE F PIC 9(8) BINARY
FILLER CL16 PIC X(16)
BUF NBYTE or

larger
NBYTE or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 14 for the READ command

S The descriptor of the socket that is going to read data

DZERO
Set to binary zeros or low values

NBYTE
Set to the length of the buffer (maximum 32 767 bytes)

Parameter values returned to the application
FILLER

Your program should ignore this field.

BUF The input buffer.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A positive value indicates the number of bytes copied into the buffer. A
value of 0 indicates that the socket is closed. A value of −1 indicates an
error.

See “EZACIC05” on page 226 for a subroutine that will translate ASCII data to
EBCDIC.

RECVFROM
This call functions in the same way as the equivalent call described on page 185.
The format of the COBOL call for the RECVFROM function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

CALL ‘EZACICAL’
USING TOKEN COMMAND S FZERO FLAGS NBYTE FROM BUF ERRNO RETCODE.

250 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
FZERO F PIC 9(8) BINARY
FLAGS F PIC 9(8) BINARY
NBYTE F PIC 9(8) BINARY
FROM CL16 PIC X(16)
BUF NBYTE or

larger
NBYTE or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 16 for the RECVFROM command

S The descriptor of the socket receiving data

FZERO
Set to binary zeros or low values

FLAGS
Set to 2 to peek at (read) data, but not destroy it, so that any subsequent
RECVFROM calls will read the same data. CICS TCP/IP does not support
out-of-band data.

NBYTE
Set to the length of the input buffer. This length cannot exceed 32 768
bytes.

Parameter values returned to the application
FROM The socket address structure identifying the from address of the data.

BUF The input buffer.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A positive value indicates the number of bytes copied into the buffer. A
value of 0 indicates that the socket is closed. A value of −1 indicates an
error.

See “EZACIC05” on page 226 for a subroutine that will translate ASCII data to
EBCDIC.

SELECT
This call functions in the same way as the equivalent call described on page 193.
The format of the COBOL call for the SELECT function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 251

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
LOM H PIC 9(4) BINARY
NUM-FDS F PIC 9(8) BINARY
TIME-SW F PIC 9(8) BINARY
RD-SW F PIC 9(8) BINARY
WR-SW F PIC 9(8) BINARY
EX-SW F PIC 9(8) BINARY
TIMEOUT STRUCTURE:
Seconds F PIC 9(8) BINARY
Milliseconds F PIC 9(8) BINARY
RD-MASK Length Of Mask* Length Of Mask*
WR-MASK Length of Mask* Length of Mask*
EX-MASK Length of Mask* Length of Mask*
DZERO D PIC X(8)
R-R-MASK Length of Mask* Length of Mask*
R-W-MASK Length of Mask* Length of Mask*
R-E-MASK Length of Mask* Length of Mask*
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

*How to calculate Length of Mask (LOM):

1. LOM = ((NUM-FDS + 31)/32) * 4, using integer arithmetic.

2. So, for NUM-FDS ≤ 32, LOM = 4 bytes.

3. For 33 ≤ NUM-FDS ≤ 64, LOM = 8 bytes, and so on.

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 19 for the SELECT command

LOM Set to the length of mask. The calculation method is given above.

NUM-FDS
The number of socket descriptors to check. For efficiency, it should be set
to the largest number of socket descriptors plus 1.

TIME-SW
Set to 0 to specify a wait forever on socket descriptor activity. Set to 1 to
specify a timeout value; this blocks the call until the timeout value is
exceeded or until there is socket activity.

RD-SW
Set either 0 (do not check for read interrupts) or 1 (check for read
interrupts).

CALL ‘EZACICAL’ USING TOKEN COMMAND LOM NUM-FDS
TIME-SW RD-SW WR-SW EX-SW
TIMEOUT RD-MASK WR-MASK EX-MASK
DZERO R-R-MASK R-W-MASK R-E-MASK
ERRNO RETCODE.

252 z/OS V1R4.0 CS: IP CICS Sockets Guide

WR-SW
Set either 0 (do not check for write interrupts) or 1 (check for write
interrupts).

EX-SW
Set either 0 (do not check for exception interrupts) or 1 (check for exception
interrupts).

TIMEOUT
Use this structure to set the timeout value if no activity is detected. Setting
this structure to (0,0) indicates that SELECT should act as a polling
function; that is, as nonblocking.

Seconds
Set to the seconds component of the timeout value.

Milliseconds
Set to the milliseconds component of the timeout value (in the range 0
through 999).

RD-MASK
Set the bit mask array for reads. See z/OS Communications Server: IP
Programmer’s Reference for more information.

WR-MASK
Set the bit mask array for writes. See z/OS Communications Server: IP
Programmer’s Reference for more information.

EX-MASK
Set the bit mask array for exceptions. See z/OS Communications Server: IP
Programmer’s Reference for more information.

DZERO
Set to binary zeros or low values.

Parameter values returned to the application
R-R-MASK

Returned bit mask array for reads. See z/OS Communications Server: IP
Programmer’s Reference for more information.

R-W-MASK
Returned bit mask array for writes. See z/OS Communications Server: IP
Programmer’s Reference for more information.

R-E-MASK
Returned bit mask array for exceptions. See z/OS Communications Server:
IP Programmer’s Reference for more information.

ERRNO
If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A positive value indicates the total number of ready sockets in all bit masks.
A value of 0 indicates an expired time limit. A value of −1 indicates an error.

SEND
This call functions in the same way as the equivalent call described on page 200.
The format of the COBOL call for the SEND function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 253

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
NBYTE F PIC 9(8) BINARY
FLAGS F PIC 9(8) BINARY
DZERO D PIC X(8)
BUF NBYTE or

larger
NBYTE or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 20 for the SEND command

S The descriptor of the socket sending the data

NBYTE
Set to the number of bytes to be transmitted (maximum 32 768 bytes)

FLAGS
Set to 0 (no flags) or 4 (do not route, routing is provided). CICS TCP/IP
does not support out-of-band data.

DZERO
Set to binary zeros or low values

BUF Buffer from which data is transmitted

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A value of −1 indicates an error. Other values have no meaning.

See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC data to
ASCII.

SENDTO
This call functions in the same way as the equivalent call described on page 205.
The format of the COBOL call for the SENDTO function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

CALL ‘EZACICAL’ USING TOKEN COMMAND S NBYTE FLAGS DZERO BUF ERRNO RETCODE.

CALL ‘EZACICAL’ USING TOKEN COMMAND S LEN FLAGS NAME BUF ERRNO RETCODE.

254 z/OS V1R4.0 CS: IP CICS Sockets Guide

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
LEN F PIC 9(8) BINARY
FLAGS F PIC 9(8) BINARY
NAME STRUCTURE:
in-family H PIC 9(4) BINARY
in-port H PIC 9(4) BINARY
in-address F PIC 9(8) BINARY
dzero D PIC X(8)
BUF LEN or

larger
LEN or larger

ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 22 for the SENDTO command

S The descriptor of the socket sending the data

LEN The number of bytes to be transmitted (maximum 32 768 bytes)

FLAGS
Set to 0 (no flags) or 4 (do not route, routing is provided)

NAME Structure specifying the address to which data is to be sent, as follows:

in-family
Must be set to 2 (AF-INET)

in-port Set to the port number for receiver

in-address
Set to the IP address for receiver

dzero Set to binary zeros or low values

BUF Set to the buffer from which data is transmitted

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A value of −1 indicates an error. Other values have no meaning.

See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC data to
ASCII.

SETSOCKOPT
This call functions in the same way as the equivalent call described on page 165.
The format of the COBOL call for the SETSOCKOPT function is:

Appendix A. Original COBOL application programming interface (EZACICAL) 255

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
LEN F PIC 9(8) BINARY
LEVEL F PIC X(4)
OPTNAME F PIC 9(8) BINARY
OPTVAL CL4 PIC X(4)
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND
Must be set to 23 for the SETSOCKOPT command

S The descriptor of the socket whose options are to be set

LEN Set to the length of OPTVAL

LEVEL
This must be set to X'0000FFFF'.

OPTNAME
Set this field to specify the option to be set, as shown below. See
“SETSOCKOPT” on page 207 for a description of these settings.

Value Meaning
X'00000020' SO-BROADCAST
X'00000080' SO-LINGER
X'00000100' SO-OOBINLINE
X'00000004' SO-REUSEADDR
X'80000001' TCP_NODELAY

OPTVAL
For SO-BROADCAST, SO-OOBINLINE, and SO-REUSEADDR, set to a
nonzero integer to enable the option specified in OPTNAME, and set to 0 to
disable the option. For SO-LINGER, see the equivalent OPTVAL parameter
in “SETSOCKOPT” on page 207.

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return value of 0 indicates a successful call. A return value of −1 indicates
an error.

CALL ‘EZACICAL’
USING TOKEN COMMAND S LEN LEVEL OPTNAME OPTVAL ERRNO RETCODE.

256 z/OS V1R4.0 CS: IP CICS Sockets Guide

SHUTDOWN
This call functions in the same way as the equivalent call described on page 214.
The format of the COBOL call for the SHUTDOWN function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
S H PIC 9(4) BINARY
FZERO F PIC 9(8) BINARY
HOW F PIC 9(8) BINARY
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 24 for the SHUTDOWN command

S The descriptor of the socket to be shut down

FZERO
Set to zeros

HOW Set this to specify whether all or part of a connection is to be shut down, as
follows:

Value Meaning
0 Ends communication from the socket
1 Ends communication to the socket
2 Ends communication both to and from the socket

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
A return value of 0 indicates a successful call. A return value of −1 indicates
an error.

SOCKET
This call functions in the same way as the equivalent call described on page 216.
The format of the COBOL call for the SOCKET function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for call format, see page 236).

CALL ‘EZACICAL’ USING TOKEN COMMAND S FZERO HOW ERRNO RETCODE.

CALL ‘EZACICAL’
USING TOKEN COMMAND HZERO AF TYPE PROTOCOL SOCKNO ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 257

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY
HZERO H PIC 9(4) BINARY
AF F PIC 9(8) BINARY
TYPE F PIC 9(8) BINARY
PROTOCOL F PIC 9(8) BINARY
SOCKNO F PIC 9(8) BINARY
ERRNO F PIC 9(8) BINARY
RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND
Must be set to 25 for the SOCKET command

HZERO
Set to binary zeros or low values

AF Must be set to 2 (AF-INET)

TYPE Set to 1 for TCP sockets; 2 for UDP sockets.

PROTOCOL
Set to 0. (The system will select the appropriate protocol for the TYPE
specified above.)

SOCKNO
Set to −1. The system will return the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
The socket number for the new socket is returned. A RETCODE of −1
indicates an error.

TAKESOCKET
This call functions in the same way as the equivalent call described on page 218.
The format of the COBOL call for the TAKESOCKET function is:

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4) BINARY

CALL ‘EZACICAL’
USING TOKEN COMMAND HZERO CLIENTID L-DESC SOCKNO ERRNO RETCODE.

258 z/OS V1R4.0 CS: IP CICS Sockets Guide

HZERO H PIC 9(4) BINARY
CLIENTID STRUCTURE:
Domain F PIC 9(8) BINARY
Name CL8 PIC X(8)
Task CL8 PIC X(8)
Reserved CL20 PIC X(20)
L-DESC F PIC 9(8) BINARY
SOCKNO F PIC 9(8) BINARY
ERRNO F PIC 9(8) BINARY
RETCODE F PIC 9(8) BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 32 for the TAKESOCKET command

HZERO
Set to zeros

CLIENTID
Structure specifying the client ID of this program:

Domain
Must be set to 2 (AF-INET)

Name Set to address space identifier, obtained from GETCLIENTID

Task Set to CICS task number with L at the right end

Reserved
Set to binary zeros or LOW VALUES

L-DESC
Set to the descriptor (as used by the socket-giving program) of the socket
being passed.

SOCKNO
Set to −1. The system will return the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
The socket number for the new socket is returned. A RETCODE of −1
indicates an error.

WRITE
This call functions in the same way as the equivalent call described on page 220.
The format of the COBOL call for the WRITE function is:

CALL ‘EZACICAL’ USING TOKEN COMMAND S NBYTE FZERO SZERO BUF ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 259

In assembler language, issue the macro call CALL EZACICAL, using standard
assembler call syntax (for the call format, see page 236).

Parameter lengths in assembler language and COBOL

TOKEN CL16 PIC X(16)
COMMAND H PIC 9(4)

BINARY
S H PIC 9(4)

BINARY
NBYTE F PIC 9(8)

BINARY
FZERO F PIC 9(8)

BINARY
SZERO XL16 PIC X(16)
BUF NBYTE or larger NBYTE or larger
ERRNO F PIC 9(8)

BINARY
RETCODE F PIC S9(8)

BINARY

Parameter values to be set by the application
TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND
Must be set to 26 for the WRITE command

S The descriptor of the socket from which data is to be transmitted

NBYTE
Set to the number of bytes of data to be transmitted. This value cannot
exceed 32 768 bytes.

FZERO
Set to binary zeros or LOW VALUES

SZERO
Set to binary zeros or LOW VALUES

BUF Buffer containing data to be transmitted

Parameter values returned to the application
ERRNO

If RETCODE is negative, this contains an error number. Error numbers are
described in Appendix B, “Return codes” on page 261.

RETCODE
The number of bytes written is returned. A RETCODE of −1 indicates an
error.

See “EZACIC04” on page 225 for a subroutine that will translate EBCDIC data to
ASCII.

260 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix B. Return codes

This appendix covers the following return codes and error messages

v Error numbers from MVS TCP/IP

v Error codes from the Sockets Extended interface.

Sockets Return Codes (ERRNOs)
This section provides the system-wide message numbers and codes set by the
system calls. These message numbers and codes are in the TCPERRNO.H include
file supplied with TCP/IP Services.

Table 16. Sockets ERRNOs

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

1 EPERM All Permission is denied. No owner
exists.

Check that TPC/IP is
still active; check
protocol value of socket
() call.

1 EDOM All Argument too large. Check parameter
values of the function
call.

2 ENOENT All The data set or directory was not
found.

Check files used by the
function call.

2 ERANGE All The result is too large. Check parameter
values of the function
call.

3 ESRCH All The process was not found. A
table entry was not located.

Check parameter
values and structures
pointed to by the
function parameters.

4 EINTR All A system call was interrupted. Check that the socket
connection and TCP/IP
are still active.

5 EIO All An I/O error occurred. Check status and
contents of source
database if this
occurred during a file
access.

6 ENXIO All The device or driver was not
found.

Check status of the
device attempting to
access.

7 E2BIG All The argument list is too long. Check the number of
function parameters.

8 ENOEXEC All An EXEC format error occurred. Check that the target
module on an exec call
is a valid executable
module.

9 EBADF All An incorrect socket descriptor was
specified.

Check socket
descriptor value. It
might be currently not
in use or incorrect.

© Copyright IBM Corp. 1994, 2002 261

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

9 EBADF Givesocket The socket has already been
given. The socket domain is not
AF_INET.

Check the validity of
function parameters.

9 EBADF Select One of the specified descriptor
sets is an incorrect socket
descriptor.

Check the validity of
function parameters.

9 EBADF Takesocket The socket has already been
taken.

Check the validity of
function parameters.

10 ECHILD All There are no children. Check if created
subtasks still exist.

11 EAGAIN All There are no more processes. Retry the operation.
Data or condition might
not be available at this
time.

12 ENOMEM All There is not enough storage. Check validity of
function parameters.

13 EACCES All Permission denied, caller not
authorized.

Check access authority
of file.

13 EACCES Takesocket The other application (Listener) did
not give the socket to your
application. Permission denied,
caller not authorized.

Check access authority
of file.

14 EFAULT All An incorrect storage address or
length was specified.

Check validity of
function parameters.

15 ENOTBLK All A block device is required. Check device status
and characteristics.

16 EBUSY All Listen has already been called for
this socket. Device or file to be
accessed is busy.

Check if the device or
file is in use.

17 EEXIST All The data set exists. Remove or rename
existing file.

18 EXDEV All This is a cross-device link. A link to
a file on another file system was
attempted.

Check file permissions.

19 ENODEV All The specified device does not
exist.

Check file name and if
it exists.

20 ENOTDIR All The specified directory is not a
directory.

Use a valid file that is a
directory.

21 EISDIR All The specified directory is a
directory.

Use a valid file that is
not a directory.

22 EINVAL All types An incorrect argument was
specified.

Check validity of
function parameters.

23 ENFILE All Data set table overflow occurred. Reduce the number of
open files.

24 EMFILE All The socket descriptor table is full. Check the maximum
sockets specified in
MAXDESC().

262 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

25 ENOTTY All An incorrect device call was
specified.

Check specified
IOCTL() values.

26 ETXTBSY All A text data set is busy. Check the current use
of the file.

27 EFBIG All The specified data set is too large. Check size of accessed
dataset.

28 ENOSPC All There is no space left on the
device.

Increase the size of
accessed file.

29 ESPIPE All An incorrect seek was attempted. Check the offset
parameter for seek
operation.

30 EROFS All The data set system is Read only. Access data set for
read only operation.

31 EMLINK All There are too many links. Reduce the number of
links to the accessed
file.

32 EPIPE All The connection is broken. For
socket write/send, peer has shut
down one or both directions.

Reconnect with the
peer.

33 EDOM All The specified argument is too
large.

Check and correct
function parameters.

34 ERANGE All The result is too large. Check function
parameter values.

35 EWOULDBLOCK Accept The socket is in nonblocking mode
and connections are not queued.
This is not an error condition.

Reissue Accept().

35 EWOULDBLOCK Read
Recvfrom

The socket is in nonblocking mode
and read data is not available. This
is not an error condition.

Issue a select on the
socket to determine
when data is available
to be read or reissue
the Read()/Recvfrom().

35 EWOULDBLOCK Send Sendto
Write

The socket is in nonblocking mode
and buffers are not available.

Issue a select on the
socket to determine
when data is available
to be written or reissue
the Send(), Sendto(), or
Write().

36 EINPROGRESS Connect The socket is marked nonblocking
and the connection cannot be
completed immediately. This is not
an error condition.

See the Connect()
description for possible
responses.

37 EALREADY Connect The socket is marked nonblocking
and the previous connection has
not been completed.

Reissue Connect().

37 EALREADY Maxdesc A socket has already been created
calling Maxdesc() or multiple calls
to Maxdesc().

Issue Getablesize() to
query it.

Appendix B. Return codes 263

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

37 EALREADY Setibmopt A connection already exists to a
TCP/IP image. A call to
SETIBMOPT (IBMTCP_IMAGE),
has already been made.

Only call Setibmopt()
once.

38 ENOTSOCK All A socket operation was requested
on a nonsocket connection. The
value for socket descriptor was not
valid.

Correct the socket
descriptor value and
reissue the function
call.

39 EDESTADDRREQ All A destination address is required. Fill in the destination
field in the correct
parameter and reissue
the function call.

40 EMSGSIZE Sendto
Sendmsg
Send Write

The message is too long. It
exceeds the IP limit of 64K or the
limit set by the setsockopt() call.

Either correct the
length parameter, or
send the message in
smaller pieces.

41 EPROTOTYPE All The specified protocol type is
incorrect for this socket.

Correct the protocol
type parameter.

42 ENOPROTOOPT Getsockopt
Setsockopt

The socket option specified is
incorrect or the level is not
SOL_SOCKET. Either the level or
the specified optname is not
supported.

Correct the level or
optname.

42 ENOPROTOOPT Getibmsockopt
Setibmsockopt

Either the level or the specified
optname is not supported.

Correct the level or
optname.

43 EPROTONOSUPPORT Socket The specified protocol is not
supported.

Correct the protocol
parameter.

44 ESOCKTNOSUPPORT All The specified socket type is not
supported.

Correct the socket type
parameter.

45 EOPNOTSUPP Accept
Givesocket

The selected socket is not a
stream socket.

Use a valid socket.

45 EOPNOTSUPP Listen The socket does not support the
Listen call.

Change the type on the
Socket() call when the
socket was created.
Listen() only supports a
socket type of
SOCK_STREAM.

45 EOPNOTSUPP Getibmopt
Setibmopt

The socket does not support this
function call. This command is not
supported for this function.

Correct the command
parameter. See
Getibmopt() for valid
commands. Correct by
ensuring a Listen() was
not issued before the
Connect().

46 EPFNOSUPPORT All The specified protocol family is not
supported or the specified domain
for the client identifier is not
AF_INET=2.

Correct the protocol
family.

264 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

47 EAFNOSUPPORT Bind Connect
Socket

The specified address family is not
supported by this protocol family.

For Socket(), set the
domain parameter to
AF_INET. For Bind()
and Connect(), set
Sin_Family in the
socket address
structure to AF_INET.

47 EAFNOSUPPORT Getclient
Givesocket

The socket specified by the socket
descriptor parameter was not
created in the AF_INET domain.

The Socket() call used
to create the socket
should be changed to
use AF_INET for the
domain parameter.

48 EADDRINUSE Bind The address is in a timed wait
because a LINGER delay from a
previous close or another process
is using the address.

If you want to reuse the
same address, use
Setsockopt() with
SO_REUSEADDR. See
Setsockopt().
Otherwise, use a
different address or
port in the socket
address structure.

49 EADDRNOTAVAIL Bind The specified address is incorrect
for this host.

Correct the function
address parameter.

49 EADDRNOTAVAIL Connect The calling host cannot reach the
specified destination.

Correct the function
address parameter.

50 ENETDOWN All The network is down. Retry when the
connection path is up.

51 ENETUNREACH Connect The network cannot be reached. Ensure that the target
application is active.

52 ENETRESET All The network dropped a connection
on a reset.

Reestablish the
connection between the
applications.

53 ECONNABORTED All The software caused a connection
abend.

Reestablish the
connection between the
applications.

54 ECONNRESET All The connection to the destination
host is not available.

N/A

54 ECONNRESET Send Write The connection to the destination
host is not available.

The socket is closing.
Issue Send() or Write()
before closing the
socket.

55 ENOBUFS All No buffer space is available. Check the application
for massive storage
allocation call.

55 ENOBUFS Accept Not enough buffer space is
available to create the new socket.

Call your system
administrator.

55 ENOBUFS Send Sendto
Write

Not enough buffer space is
available to send the new
message.

Call your system
administrator.

Appendix B. Return codes 265

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

55 ENOBUFS Takesocket Not enough buffer space is
available to create the new socket.

Call your system
administrator.

56 EISCONN Connect The socket is already connected. Correct the socket
descriptor on Connect()
or do not issue a
Connect() twice for the
socket.

57 ENOTCONN All The socket is not connected. Connect the socket
before communicating.

58 ESHUTDOWN All A Send cannot be processed after
socket shutdown.

Issue read/receive
before shutting down
the read side of the
socket.

59 ETOOMANYREFS All There are too many references. A
splice cannot be completed.

Call your system
administrator.

60 ETIMEDOUT Connect The connection timed out before it
was completed.

Ensure the server
application is available.

61 ECONNREFUSED Connect The requested connection was
refused.

Ensure server
application is available
and at specified port.

62 ELOOP All There are too many symbolic loop
levels.

Reduce symbolic links
to specified file.

63 ENAMETOOLONG All The file name is too long. Reduce size of
specified file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the host. Set up network path to
specified host and
verify that host name is
valid.

66 ENOTEMPTY All The directory is not empty. Clear out specified
directory and reissue
call.

67 EPROCLIM All There are too many processes in
the system.

Decrease the number
of processes or
increase the process
limit.

68 EUSERS All There are too many users on the
system.

Decrease the number
of users or increase the
user limit.

69 EDQUOT All The disk quota has been
exceeded.

Call your system
administrator.

70 ESTALE All An old NFS** data set handle was
found.

Call your system
administrator.

71 EREMOTE All There are too many levels of
remote in the path.

Call your system
administrator.

72 ENOSTR All The device is not a stream device. Call your system
administrator.

266 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

73 ETIME All The timer has expired. Increase timer values
or reissue function.

74 ENOSR All There are no more stream
resources.

Call your system
administrator.

75 ENOMSG All There is no message of the
desired type.

Call your system
administrator.

76 EBADMSG All The system cannot read the
message.

Verify that z/OS
CSinstallation was
successful and that
message files were
properly loaded.

77 EIDRM All The identifier has been removed. Call your system
administrator.

78 EDEADLK All A deadlock condition has occurred. Call your system
administrator.

78 EDEADLK Select
Selectex

None of the sockets in the socket
desriptor sets are either AF_NET
or AF_IUCV sockets and there is
not timeout or no ECB specified.
The select/selectex would never
complete.

Correct the socket
descriptor sets so that
an AF_NET or
AF_IUCV socket is
specified. A timeout or
ECB value can also be
added to avoid the
select/selectex from
waiting indefinitely.

79 ENOLCK All No record locks are available. Call your system
administrator.

80 ENONET All The requested machine is not on
the network.

Call your system
administrator.

81 ERREMOTE All The object is remote. Call your system
administrator.

82 ENOLINK All The link has been severed. Release the sockets
and reinitialize the
client-server
connection.

83 EADV All An ADVERTISE error has
occurred.

Call your system
administrator.

84 ESRMNT All An SRMOUNT error has occurred. Call your system
administrator.

85 ECOMM All A communication error has
occurred on a Send call.

Call your system
administrator.

86 EPROTO All A protocol error has occurred. Call your system
administrator.

87 EMULTIHOP All A multihop address link was
attempted.

Call your system
administrator.

88 EDOTDOT All A cross-mount point was detected.
This is not an error.

Call your system
administrator.

89 EREMCHG All The remote address has changed. Call your system
administrator.

Appendix B. Return codes 267

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

90 ECONNCLOSED All The connection was closed by a
peer.

Check that the peer is
running.

113 EBADF All Socket descriptor is not in correct
range. The maximum number of
socket descriptors is set by
MAXDESC(). The default range is
0–49.

Reissue function with
corrected socket
descriptor.

113 EBADF Bind socket The socket descriptor is already
being used.

Correct the socket
descriptor.

113 EBADF Givesocket The socket has already been
given. The socket domain is not
AF_INET.

Correct the socket
descriptor.

113 EBADF Select One of the specified descriptor
sets is an incorrect socket
descriptor.

Correct the socket
descriptor. Set on
Select() or Selectex().

113 EBADF Takesocket The socket has already been
taken.

Correct the socket
descriptor.

113 EBADF Accept A Listen() has not been issued
before the Accept().

Issue Listen() before
Accept().

121 EINVAL All An incorrect argument was
specified.

Check and correct all
function parameters.

145 E2BIG All The argument list is too long. Eliminate excessive
number of arguments.

156 EMVSINITIAL All Process initialization error.

This indicates an z/OS UNIX
process initialization failure. This is
usually an indication that a proper
OMVS RACF® segment is not
defined for the user ID associated
with application. The RACF OMVS
segment may not be defined or
may contain errors such as an
improper HOME() directory
specification.

Attempt to initialize
again.

1002 EIBMSOCKOUTOFRANGE Socket A socket number assigned by the
client interface code is out of
range.

Check the socket
descriptor parameter.

1003 EIBMSOCKINUSE Socket A socket number assigned by the
client interface code is already in
use.

Use a different socket
descriptor.

1004 EIBMIUCVERR All The request failed because of an
IUCV error. This error is generated
by the client stub code.

Ensure IUCV/VMCF is
functional.

1008 EIBMCONFLICT All This request conflicts with a
request already queued on the
same socket.

Cancel the existing call
or wait for its
completion before
reissuing this call.

1009 EIBMCANCELLED All The request was canceled by the
CANCEL call.

Informational, no action
needed.

268 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

1011 EIBMBADTCPNAME All A TCP/IP name that is not valid
was detected.

Correct the name
specified in the
IBM_TCPIMAGE
structure.

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is not valid
was detected.

Correct the name
specified in the
IBM_TCPIMAGE
structure.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is not valid
was detected.

Correct the name
specified on the IDENT
option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is not valid
was detected.

Contact your system
administrator.

1013 EIBMBADCONNECTIONSTATE All A connection token that is not valid
was detected; bad state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZEDCALLER All An unauthorized caller specified an
authorized keyword.

Ensure user ID has
authority for the
specified operation.

1015 EIBMBADCONNECTIONMATCH All A connection token that is not valid
was detected. There is no such
connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred when TCP/IP
was processing this request.

Verify that TCP/IP has
restarted.

1023 EIBMTERMERROR All Encountered a terminating error
while processing.

Call your system
administrator.

1026 EIBMINVDELETE All Delete requestor did not create the
connection.

Delete the request from
the process that
created it.

1027 EIBMINVSOCKET All A connection token that is not valid
was detected. No such socket
exists.

Call your system
programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated by TCP/IP.
The token was invalidated by
TCP/IP.

Reestablish the
connection to TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was already in
progress.

Reissue after previous
call has completed.

1036 EIBMNOACTIVETCP All TCP/IP is not installed or not
active.

Correct TCP/IP name
used.

1036 EIBMNOACTIVETCP Select EIBMNOACTIVETCP Ensure TCP/IP is
active.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is
active.

1037 EIBMINVTSRBUSERDATA All The request control block
contained data that is not valid.

Call your system
programmer.

1038 EIBMINVUSERDATA All The request control block
contained user data that is not
valid.

Check your function
parameters and call
your system
programmer.

Appendix B. Return codes 269

Table 16. Sockets ERRNOs (continued)

Error
Number Message Name

Socket
Type Error Description

Programmer’s
Response

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that
was already posted.

Check whether the
user’s ECB was
already posted.

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in the
RXSOCKET parameter list.

Correct the parameter
list passed to the REXX
socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID
on the INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already active. Only issue the
INITIALIZE call once in
your program.

2005 ESUBTASKALNOTACTIVE REXX The subtask is not active. Issue the INITIALIZE
call before any other
socket call.

2006 ESOCKNETNOTALLOCATED REXX The specified socket could not be
allocated.

Increase the user
storage allocation for
this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of sockets
has been reached.

Increase the number of
allocate sockets, or
decrease the number of
sockets used by your
program.

2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call
before the call that
fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server failure
occurred.

Call your MVS system
programmer.

2012 EINVALIDNAME REXX An incorrect name was received
from the TCP/IP server.

Call your MVS system
programmer.

2013 EINVALIDCLIENTID REXX An incorrect clientid was received
from the TCP/IP server.

Call your MVS system
programmer.

2014 ENIVALIDFILENAME REXX An error occurred during NUCEXT
processing.

Specify the correct
translation table file
name, or verify that the
translation table is
valid.

2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system
programmer.

2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system
programmer.

270 z/OS V1R4.0 CS: IP CICS Sockets Guide

Sockets Extended ERRNOs
Table 17. Sockets Extended ERRNOs

Error
Code Problem Description System Action Programmer’s Response

10100 An ESTAE macro did not
complete normally.

End the call. Call your MVS system programmer.

10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the application’s
address space.

10108 The first call from TCP/IP was not
INITAPI or TAKESOCKET.

End the call. Change the first TCP/IP call to INITAPI or
TAKESOCKET.

10110 LOAD of EZBSOH03 (alias
EZASOH03) failed.

End the call. Call the IBM Software Support Center.

10154 Errors were found in the
parameter list for an IOCTL call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10155 The length parameter for an
IOCTL call is less than or equal to
0.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10156 The length parameter for an
IOCTL call is 3200 (32 x 100).

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10159 A 0 or negative data length was
specified for a READ or READV
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length in the READ call.

10161 The REQARG parameter in the
IOCTL parameter list is 0.

End the call. Correct the program.

10163 A 0 or negative data length was
found for a RECV, RECVFROM,
or RECVMSG call.

Disable the subtask
for interrupts. Sever
the DLC path. Return
an error code to the
caller.

Correct the data length.

10167 The descriptor set size for a
SELECT or SELECTEX call is
less than or equal to 0.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SELECT or SELECTEX call. You
might have incorrect sequencing of socket
calls.

10168 The descriptor set size in bytes
for a SELECT or SELECTEX call
is greater than 252. A number
greater than the maximum
number of allowed sockets (2000
is maximum) has been specified.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the descriptor set size.

10170 A 0 or negative data length was
found for a SEND or SENDMSG
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SEND call.

Appendix B. Return codes 271

Table 17. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10174 A 0 or negative data length was
found for a SENDTO call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SENDTO call.

10178 The SETSOCKOPT option length
is less than the minimum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10179 The SETSOCKOPT option length
is greater than the maximum
length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10184 A data length of 0 was specified
for a WRITE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10186 A negative data length was
specified for a WRITE or WRITEV
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10190 The GETHOSTNAME option
length is less than 24 or greater
than the maximum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length parameter.

10193 The GETSOCKOPT option length
is less than the minimum or
greater than the maximum length.

End the call. Correct the length parameter.

10197 The application issued an INITAPI
call after the connection was
already established.

Bypass the call. Correct the logic that produces the INITAPI
call that is not valid.

10198 The maximum number of sockets
specified for an INITAPI exceeds
2000.

Return to the user. Correct the INITAPI call.

10200 The first call issued was not a
valid first call.

End the call. For a list of valid first calls, refer to the
section on special considerations in the
chapter on general programming.

10202 The RETARG parameter in the
IOCTL call is 0.

End the call. Correct the parameter list. You might have
incorrect sequencing of socket calls.

10203 The requested socket number is a
negative value.

End the call. Correct the requested socket number.

10205 The requested socket number is a
duplicate.

End the call. Correct the requested socket number.

10208 The NAMELEN parameter for a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAMELEN parameter. You might
have incorrect sequencing of socket calls.

10209 The NAME parameter on a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAME parameter. You might
have incorrect sequencing of socket calls.

272 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 17. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10210 The HOSTENT parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call was not
specified.

End the call. Correct the HOSTENT parameter. You might
have incorrect sequencing of socket calls.

10211 The HOSTADDR parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call is
incorrect.

End the call. Correct the HOSTADDR parameter. You
might have incorrect sequencing of socket
calls.

10212 The resolver program failed to
load correctly for a
GETHOSTBYNAME or
GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB, and linklib
datasets and rerun the program.

10213 Not enough storage is available to
allocate the HOSTENT structure.

End the call. Increase the user storage allocation for this
job.

10214 The HOSTENT structure was not
returned by the resolver program.

End the call. Ensure that the domain name server is
available. This can be a nonerror condition
indicating that the name or address specified
in a GETHOSTBYADDR or
GETHOSTBYNAME call could not be
matched.

10215 The APITYPE parameter on an
INITAPI call instruction was not 2
or 3.

End the call. Correct the APITYPE parameter.

10218 The application programming
interface (API) cannot locate the
specified TCP/IP.

End the call. Ensure that an API that supports the
performance improvements related to CPU
conservation is installed on the system and
verify that a valid TCP/IP name was specified
on the INITAPI call. This error call might also
mean that EZASOKIN could not be loaded.

10219 The NS parameter is greater than
the maximum socket for this
connection.

End the call. Correct the NS parameter on the ACCEPT,
SOCKET or TAKESOCKET call.

10221 The AF parameter of a SOCKET
call is not AF_INET.

End the call. Set the AF parameter equal to AF_INET.

10222 The SOCTYPE parameter of a
SOCKET call must be stream,
datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE parameter.

10223 No ASYNC parameter specified
for INITAPI with APITYPE=3 call.

End the call. Add the ASYNC parameter to the INITAPI
call.

10224 The IOVCNT parameter is less
than or equal to 0, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10225 The IOVCNT parameter is greater
than 120, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10226 Not valid COMMAND parameter
specified for a GETIBMOPT call.

End the call. Correct the COMMAND parameter of the
GETIBMOPT call.

Appendix B. Return codes 273

Table 17. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10229 A call was issued on an
APITYPE=3 connection without
an ECB or REQAREA parameter.

End the call. Add an ECB or REQAREA parameter to the
call.

10300 Termination is in progress for
either the CICS transaction or the
sockets interface.

End the call. None.

10330 A SELECT call was issued
without a MAXSOC value and a
TIMEOUT parameter.

End the call. Correct the call by adding a TIMEOUT
parameter.

10331 A call that is not valid was issued
while in SRB mode.

End the call. Get out of SRB mode and reissue the call.

10332 A SELECT call is invoked with a
MAXSOC value greater than that
which was returned in the INITAPI
function (MAXSNO field).

End the call. Correct the MAXSOC parameter and reissue
the call.

10334 An error was detected in creating
the data areas required to
process the socket call.

End the call. Call the IBM Software Support Center.

10999 An abend has occurred in the
subtask.

Write message
EZY1282E to the
system console. End
the subtask and post
the TRUE ECB.

If the call is correct, call your system
programmer.

20000 An unknown function code was
found in the call.

End the call. Correct the SOC-FUNCTION parameter.

20001 The call passed an incorrect
number of parameters.

End the call. Correct the parameter list.

20002 The CICS Sockets Interface is not
in operation.

End the call. Start the CICS Sockets Interface before
executing this call.

274 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix C. GETSOCKOPT/SETSOCKOPT command values

You can use the table below to determine the decimal or hexadecimal value
associated with the GETSOCKOPT/SETSOCKOPT OPTNAMES supported by the
APIs discussed in this document.

The command names are shown with underscores for the assembler language. The
underscores should be changed to dashes if using the COBOL programming
language.

Languages that cannot easily handle binary values, such as COBOL, should use
the decimal value associated with the command where necessary.

The hexadecimal value can be used in Macro, Assembler and PL/1 programs.

Table 18. GETSOCKOPT/SETSOCKOPT command values

Command name Decimal value Hex value

IP_ADD_MEMBERSHIP 1048581 X'00100005'

IP_DROP_MEMBERSHIP 1048582 X'00100006'

IP_MULTICAST_IF 1048583 X'00100007'

IP_MULTICAST_LOOP 1048580 X'00100004'

IP_MULTICAST_TTL 1048579 X'00100003'

SO_BROADCAST 32 X'00000020'

SO_ERROR 4103 X'00001007'

SO_LINGER 128 X'00000080'

SO_KEEPALIVE 8 X'00000008'

SO_OOBINLINE 256 X'00000100'

SO_RCVBUF 4098 X'00001002'

SO_REUSEADDR 4 X'00000004'

SO_SNDBUF 4097 X'00001001'

SO_TYPE 4104 X'00001008'

TCP_NODELAY 2147483649 X'80000001'

© Copyright IBM Corp. 1994, 2002 275

|

|

|
|
|

|
|
|

|
|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

276 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix D. CICS sockets messages

This section contains CICS socket interface messages.

EZY1218—EZY1348

EZY1218E mm/dd/yy hh:mm:ss PROGRAM progname DISABLED TRANID= xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The Listener checked the status of the program associated with the transaction. It was not enabled.

System Action: Listener continues.

User Response: Use CEMT to determine and correct the status of the program.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1220E mm/dd/yy hh:mm:ss READ FAILURE ON CONFIGURATION FILE PHASE=xx EIBRESP2=rrrrrr

Explanation: EZACIC21 was unable to read the configuration file.

System Action: Terminate the transaction.

User Response: Notify the CICS Systems Programmer.

System Programmer Response: Use the EIBRESP2 value to determine the problem and correct the file. See the
CICS User’s Handbook for information about EIBRESP2 values. If the EIBRESP2 value is zero, then the EZACONFG
file has been defined as remote. If this is the configuration file you want, then verify that no CICS Sockets programs
can run directly in the file owning region. This can cause the file to become disabled. Ensure that EZACIC20 is not in
the file owning region PLT, and that the EZAC and EZAO transactions are unable to run directly in the file owning
region. Attempts to open the file will fail if the file is defined with a value of YES specified in the ADD, DELETE, or
UPDATE parameters in the CICS file definition in more than one CICS region.

Module: EZACIC21

Destination: INITIALIZATION

EZY1221E mm/dd/yy hh:mm:ss CICS SOCKETS ENABLE FAILURE EIBRCODE BYTE2 = rrr

Explanation: The attempt to enable the task related user exit (TRUE) failed.

System Action: Terminate the transaction.

User Response: Notify the CICS Systems Programmer.

System Programmer Response: Use the EIBRESP2 value to determine the problem and correct the file. An
EIBRCODE BYTE2 value of 20 indicates the TRUE is already enabled. See the CICS User’s Handbook for information
about EIBRCODEs.

Module: EZACIC21

Destination: INITIALIZATION

EZY1222E mm/dd/yy hh:mm:ss CICS/SOCKETS REGISTRATION FAILURE RETURN code= return_code

Explanation: The attempt to register the CICS Sockets Feature to OS/390 failed.

System Action: Terminate the transaction.

User Response: Contact your OS/390 System Administrator.

© Copyright IBM Corp. 1994, 2002 277

System Programmer Response: See the z/OS MVS Programming: Product Registration for information about the
values for return_code.

Module: EZACIC21

Destination: INITIALIZATION

EZY1223E mm/dd/yy hh:mm:ss CICS/SOCKETS ATTACH FAILURE RETURN CODE = return_code REASON
CODE = reason_code

Explanation: An attempt to attach one of the pool subtasks failed.

System Action: Stop attaching pool subtasks. The size of the pool is determined by the number of subtasks
successfully attached.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: See the z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN for information about the values for return_code and reason_code and make appropriate adjustments to
your CICS environment.

Module: EZACIC21

Destination: INITIALIZATION

EZY1224I mm/dd/yy hh:mm:ss CICS/SOCKETS INITIALIZATION SUCCESSFUL

Explanation: The CICS Sockets Interface has completed initialization successfully.

System Action: Continue with execution.

User Response: None.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1225E mm/dd/yy hh:mm:ss STARTBR FAILURE ON CICS/SOCKETS CONFIGURATION FILE PHASE=xx
EIBRESP2=rrrrrr

Explanation: The STARTBR command used for the configuration file has failed.

System Action: Terminate the transaction.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Use the EIBRESP2 value to determine the problem. Check the CICS definition of
the Configuration file to ensure the browse operation is permitted. See the CICS User’s Handbook for information
about EIBRESP2 values.

Module: EZACIC21

Destination: INITIALIZATION

EZY1226E mm/dd/yy hh:mm:ss READNEXT FAILURE ON CICS/SOCKETS CONFIGURATION FILE PHASE=xx
EIBRESP2=rrrrrr

Explanation: The READNEXT command used for the configuration file has failed.

System Action: Terminate the transaction.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Use the EIBRESP2 value to determine the problem. Check the CICS definition of
the Configuration file to ensure the browse operation is permitted. See the CICS User’s Handbook for information
about EIBRESP2 values.

Module: EZACIC21

EZY1223E • EZY1226E

278 z/OS V1R4.0 CS: IP CICS Sockets Guide

Destination: INITIALIZATION

EZY1227E mm/dd/yy hh:mm:ss CICS/SOCKETS INVALID LISTENER TRANID = tran

Explanation: The Listener transaction tran was not defined to CICS.

System Action: Terminate Listener Initialization.

User Response: Use CICS facilities to define the listener transaction and program. Then use EZAO to start the
listener.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1228E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tran DISABLED

Explanation: The Listener transaction tran could not be started because it was disabled.

System Action: Terminate Listener Initialization.

User Response: Use CICS facilities to enable the transaction and then start the listener using EZAO.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1229E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER TRANSACTION tran NOT AUTHORIZED

Explanation: The Listener transaction tran could not be started because it was not authorized.

System Action: Terminate Listener Initialization.

User Response: Use CICS facilities to authorize starting the listener transaction and then start the listener using
EZAO.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1246E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm INVALID

Explanation: The Listener transaction could not be started because program mmmmmmmm is not defined.

System Action: Terminate Listener Initialization.

User Response: If the program ID is correct, use CICS facilities to define it. If it is not correct, use the EZAC
transaction to correct the CICS Sockets Configuration file.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1247E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm DISABLED

Explanation: The Listener transaction could not be started because program mmmmmmmm is disabled.

System Action: Terminate Listener Initialization.

User Response: Use CICS facilities to enable the program and then use EZAO to start the listener.

System Programmer Response: None.

Module: EZACIC21

EZY1227E • EZY1247E

Appendix D. CICS sockets messages 279

Destination: INITIALIZATION

EZY1250E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER tran NOT ON CONFIGURATION FILE

Explanation: The Listener transaction tran is not defined on the CICS Sockets configuration file.

System Action: Terminate Listener Initialization.

User Response: If the listener transaction name is correct, use the EZAC transaction to define it on the CICS
Configuration file. If the name is not correct, correct it on the EZAO transaction.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1251E mm/dd/yy hh:mm:ss CICS SOCKETS MODULE mmmmmmmm ABEND xxxx

Explanation: The CICS Sockets module mmmmmmmm has abended.

System Action: Terminate the transaction.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1252E mm/dd/yy hh:mm:ss UNABLE TO LOAD EZASOH03 ERROR CODE= error_code REASON CODE=
reason_code

Explanation: During CICS Sockets initialization, the attempt to load module EZASOH03 failed.

System Action: Terminate Initialization.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: See the z/OS MVS Programming: Authorized Assembler Services Reference
LLA-SDU for information about the values for error_code and reason_code to determine why the module would not
load. Also, look for associated MVS messages.

Module: EZACIC21

EZY1253E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER tran NOT ON CONFIGURATION FILE

Explanation: An EZAO STOP LISTENER transaction was run with an invalid listener name.

System Action: Present the panel to correct the name.

User Response: Correct the name and retry termination.

System Programmer Response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1254E mm/dd/yy hh:mm:ss CACHE FILE ERROR RESP2 VALUE ****** CALL # *

Explanation: An error occurred on a cache file operation.

System Action: Return to the calling program with an error response.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Use the RESP2 value to determine the error and correct the cache file. See the
CICS User’s Handbook for information about RESP2 values.

EZY1250E • EZY1254E

280 z/OS V1R4.0 CS: IP CICS Sockets Guide

Module: EZACIC25

Destination: DOMAIN NAME SERVER FUNCTION

EZY1255E mm/dd/yy hh:mm:ss TEMPORARY STORAGE ERROR RESP2 VALUE ****** CALL # *

Explanation: An error occurred on a temporary storage operation in EZACIC25.

System Action: Return to the calling program with an error response.

User Response: Use the RESP2 value to determine the error. Contact the IBM Software Support Center. See the
CICS User’s Handbook for information about RESP2 values.

System Programmer Response: None.

Module: EZACIC25

Destination: DOMAIN NAME SERVER FUNCTION

EZY1256E mm/dd/yy hh:mm:ss CICS SOCKETS INTERFACE NOT ENABLED PRIOR TO LISTENER STARTUP

Explanation: An attempt to start a listener was made when the CICS Sockets Interface was inactive.

System Action: Return error and terminate transaction EZAO.

User Response: Use transaction EZAO to start the CICS Sockets Interface prior to starting the Listener.

System Programmer Response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1258I module ENTRY POINT IS address

Explanation: This message displays the entry point address of a module.

module is the name of the module.

address is the entry point address of the module.

System Action: Processing continues.

User Response: None.

System Programmer Response: None.

Module: EZACIC01, EZACIC02

EZY1259E mm/dd/yy hh:mm:ss IOCTL CALL FAILURE TRANSACTION=transactionid TASKID=tasknumber
ERRNO=errno

Explanation: Listener transaction transactionid experienced a failure on the IOCTL call.

In the message text:

mm/dd/yy
The date (month/day/year) of the message.

hh:mm:ss
The time (hours:minutes:seconds) of the message.

transactionid
The name of the transaction under which the Listener is executing.

tasknumber
The CICS task number of the Listener task.

errno The UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: If the error is during initialization of the Listener, then the Listener transaction transactionid

EZY1255E • EZY1259E

Appendix D. CICS sockets messages 281

terminates. Otherwise, the Listener closes the socket that was being processed and resumes normal processing.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1260E mm/dd/yy hh:mm:ss EZACIC03 ATTACH FAILED GPR15=xxxxxxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: An ATTACH for an MVS subtask has failed. The reason code is in GPR 15.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The task related user exit (TRUE) for this transaction is disabled. The transaction abends with an
AEY9.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Determine the cause for the ATTACH failure and correct.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1261I mm/dd/yy hh:mm:ss EZACIC03 ATTACH SUCCESSFUL, TCB ADDRESS= xxxxxxxx TERM=term
TRAN=tran TASK=cicstask

Explanation: An ATTACH for an MVS subtask was successful. This message is produced only for listeners and for
those tasks which cannot be accommodated within the pool of reusable tasks.

System Action: Processing continues.

User Response: If this message happens frequently, increase the size of the reusable task pool for this CICS.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1262E mm/dd/yy hh:mm:ss GWA ADDRESS INVALID UEPGAA=xxxxxxxx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid GWA address.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Use EZAO to stop (immediate) and start the CICS Sockets Interface. If the problem repeats,
contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1263E mm/dd/yy hh:mm:ss TIE ADDRESS INVALID UEPGAA=xxxxxxxx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid TIE address.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Use EZAO to stop (immediate) and start the CICS Sockets Interface. If the problem repeats,
contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

EZY1260E • EZY1263E

282 z/OS V1R4.0 CS: IP CICS Sockets Guide

Destination: TASK RELATED USER EXIT (TRUE)

EZY1264E mm/dd/yy hh:mm:ss FLAG WORD ADDRESS INVALID UEPFLAGS= xxxxxxxx ERRNO=errno
TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid flag word address.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Use EZAO to stop (immediate) and start the CICS Sockets Interface. If the problem repeats,
contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1265E mm/dd/yy hh:mm:ss CICS VERSION UNSUPPORTED GWACIVRM=xxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected a version of CICS which it does not support. The CICS
version must be 3 or above.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: The CICS Sockets Interface requires CICS V3R3 or later.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1267E mm/dd/yy hh:mm:ss ROUTING TASK FUNCTION INVALID UERTIFD=xx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid routing task function.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: If this happens repeatedly, use EZAO to STOP (immediate) the CICS Sockets Interface and then
START it. If it still happens, contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1268E mm/dd/yy hh:mm:ss SAVE AREA ADDRESS INVALID UEPHSMA= xxxxxxxx ERRNO=errno
TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid save area address.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Contact the IBM Software Support Center.

EZY1264E • EZY1268E

Appendix D. CICS sockets messages 283

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1269E mm/dd/yy hh:mm:ss PARM LIST ADDRESS INVALID GPR1= xxxxxxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid parameter list on a call request from the CICS
application program.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Check the application program calls to the CICS Sockets Interface to ensure that each call has the
correct number and type of parameters.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1270E mm/dd/yy hh:mm:ss PARM nn ADDRESS INVALID ADDRESS= xxxxxxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid parameter address on a call request from the
CICS application program. nn is the number of the parameter.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Check the application program calls to the CICS Sockets Interface to ensure that the parameter
addresses are valid (not zero). This problem is most common in assembler language and C applications.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1271E mm/dd/yy hh:mm:ss TOKERR=xxxxxxxx ERRNO=errno TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected a token error on an internal token used to coordinate CICS
transaction activity with TCP/IP activity.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1269E • EZY1271E

284 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1272E mm/dd/yy hh:mm:ss INVALID SOCKET/FUNCTION CALL FUNCTION= xxxx ERRNO=errno
TRAN=tran TASK=cicstask

Explanation: A call to EZASOKET specified in invalid function.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Correct the call and retry.

System Programmer Response: None.

Module: EZACIC01

Destination: task related user exit (TRUE)

EZY1273E mm/dd/yy hh:mm:ss IUCV SOCK/FUNC TABLE INVALID FUNCTION= xxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: A call to EZACICAL specified in invalid function.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Correct the call and retry.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1274E mm/dd/yy hh:mm:ss INCORRECT EZASOKET PARM COUNT FUNCTION= xxxx ERRNO=errno
TRAN=tran TASK=cicstask

Explanation: A call to EZASOKET specified in invalid number of parameters.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Correct the call and retry.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1275E mm/dd/yy hh:mm:ss MONITOR CALLS NOT SUPPORTED UERTFID=xx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected a monitor call which is not supported for this version of
CICS.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1272E • EZY1275E

Appendix D. CICS sockets messages 285

EZY1276E mm/dd/yy hh:mm:ss EDF CALLS NOT SUPPORTED UERTFID=xx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: The task related user exit (TRUE) detected an EDF (Execute Diagnostic Facility) call. This TRUE does
not support EDF calls.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE is disabled and the task abends with an AEY9.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1277I mm/dd/yy hh:mm:ss EZACIC03 DETACHED TCB ADDRESS=xxxxxxxx ERRNO=errno TRAN=tran
TASK=cicstask

Explanation: An attached subtask is terminating.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The TRUE detaches the MVS subtask.

User Response: None.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1278I mm/dd/yy hh:mm:ss EZACIC03 DETACH SUCCESSFUL TCB ADDRESS= xxxxxxxx TRAN=tran
TASK=cicstask

Explanation: An attached subtask is terminating.

System Action: The TRUE detaches the MVS subtask.

User Response: None.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1279E mm/dd/yy hh:mm:ss INVALID SYNC PT COMMAND DISP=xx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) Detected an invalid Sync Point command.

System Action: Disable the TRUE and return to the caller.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1276E • EZY1279E

286 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1280E mm/dd/yy hh:mm:ss INVALID RESYNC COMMAND DISP=xx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) Detected an invalid Resync command.

System Action: Disable the TRUE and return to the caller.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC01

EZY1282E mm/dd/yy hh:mm:ss 10999 ABEND reasonxx

Explanation: The ESTAE processing in EZACIC03 could not be completed because of reasonxx.

System Action: Allow the ABEND to percolate.

User Response: Contact the IBM Software Support Center. See the CICS User’s Handbook for information about
abend codes.

System Programmer Response: None.

Module: EZACIC03

Destination: MVS SUBTASK

EZY1285E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tran NOT ON CONFIGURATION
FILE

Explanation: The listener attempting to start does not have a description record on the CICS Sockets configuration
file.

System Action: Listener terminates.

User Response: Contact CICS Systems Programmer.

System Programmer Response: Add the listener to the Configuration file using EZAC and retry.

Module: EZACIC02

Destination: LISTENER

EZY1286E mm/dd/yy hh:mm:ss READ FAILURE ON CICS/SOCKETS CONFIGURATION FILE TRANSACTION=
tran EIBRESP2= rrrrr

Explanation: The listener could not read the configuration file.

System Action: Listener terminates.

User Response: Contact CICS Systems Programmer.

System Programmer Response: Use the CICS APR to interpret the value of EIBRESP2. If the file is not known to
CICS, perform the installation steps for the configuration file.

See the CICS User’s Handbook for information about EIBRESP2 values.

Module: EZACIC02

Destination: LISTENER

EZY1287E mm/dd/yy hh:mm:ss EZYCIC02 GETMAIN FAILURE FOR VARIABLE STORAGE TRANSACTION= tran
EIBRESP2=rrrrr

Explanation: EZACIC02 could not obtain the variable storage it requires to execute.

System Action: Listener terminates.

User Response: Contact CICS Systems Programmer.

EZY1280E • EZY1287E

Appendix D. CICS sockets messages 287

System Programmer Response: Use the CICS APR to interpret the value of EIBRESP2. Correct your CICS
configuration as indicated.

See the CICS User’s Handbook for information about EIBRESP2 values.

Module: EZACIC02

Destination: LISTENER

EZY1288E mm/dd/yy hh:mm:ss CICS SOCKETS MODULE mmmmmmmm ABEND aaaa

Explanation: An abend has occurred in module mmmmmmmm of the CICS Sockets Interface.

System Action: Listener terminates.

User Response: See the CICS User’s Handbook for information about abend codes. Contact the IBM Software
Support Center.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1289E mm/dd/yy hh:mm:ss CICS LISTENER TRANSACTION tran TERMINATING

Explanation: The listener is terminating. This could be a normal shutdown situation or a failure related to the listener
socket. If it is the latter, a previous message will describe the failure.

System Action: Continue termination of the listener.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1290I mm/dd/yy hh:mm:ss LISTENER TRANSACTION tran STARTING

Explanation: Transaction tran, Listener program EZACIC02 has been given control.

System Action: Listener tran continues.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1291I mm/dd/yy hh:mm:ss LISTENER TRANSACTION tran TASKID= cicstask ACCEPTING REQUESTS VIA
PORT pppppp

Explanation: Listener transaction tran is now available to receive connection requests on port pppppp.

System Action: Listener tran continues

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1288E • EZY1291I

288 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1292E mm/dd/yy hh:mm:ss CANNOT START LISTENER, TRUE NOT ACTIVE TRANSACTION= tran
TASKID= cicstask EIBRCODE BYTE3=rr

Explanation: The initialization of the CICS Sockets Interface did not complete successfully and this listener cannot
continue.

System Action: Listener transaction tran terminates.

User Response: If EZAO is being used to start the listener, ensure that the CICS Sockets interface has successfully
completed initialization first. If this happens during automatic initialization, look for other messages which would
indicate why the initialization of the CICS Sockets Interface failed.

See the CICS User’s Handbook for information about EIBRCODEs.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1293E mm/dd/yy hh:mm:ss INITAPI CALL FAILURE TRANSACTION=tran TASKID= cicstask ERRNO=errno

Explanation: Listener transaction tran experienced a failure on the INITAPI call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Programmer Response: None.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

Module: EZACIC02

Destination: LISTENER

EZY1294E mm/dd/yy hh:mm:ss SOCKET CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the SOCKET call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Programmer Response: None.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

Module: EZACIC02

Destination: LISTENER

EZY1295E mm/dd/yy hh:mm:ss BIND CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the BIND call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

Note: An ERRNO=48 could indicate that the port is not reserved in hlq.TCPIP.PROFILE.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1292E • EZY1295E

Appendix D. CICS sockets messages 289

EZY1296E mm/dd/yy hh:mm:ss LISTEN CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the LISTEN call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1297E mm/dd/yy hh:mm:ss GETCLIENTID CALL FAILURE TRANSACTION=tran TASKID= cicstask
ERRNO=errno

Explanation: Listener transaction tran experienced a failure on the GETCLIENTID call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1298E mm/dd/yy hh:mm:ss CLOSE FAILURE TRANID= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the CLOSE call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran continues.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1299E mm/dd/yy hh:mm:ss SELECT CALL FAILURE TRANSACTION= tran TASKID= xxxxx ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the SELECT call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1296E • EZY1299E

290 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1300E mm/dd/yy hh:mm:ss READ FAILURE TRANSID= tran TASKID= cicstran ERRNO= errno INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction tran experienced a failure on the READ call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran continues.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1301E mm/dd/yy hh:mm:ss READ CALL RECEIVED NULL DATA TRANSID= tran PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction tran received null data from the client. Either the client issued a close socket call
or it issued a send with a length of zero.

System Action: Listener transaction xxxx continues.

User Response: Correct the client program.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1302I mm/dd/yy hh:mm:ss READ TIMEOUT PARTNER INET ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The initial message from the client did not arrive within the read timeout value specified for this listener
in the CICS Sockets configuration file.

System Action: The listener closes the connection socket and does not attempt to start a server transaction.

User Response: Determine the cause of the delay and correct it.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1303I mm/dd/yy hh:mm:ss EZACIC02 GIVESOCKET TIMEOUT TRANS tran PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The started server transaction did not perform the takesocket within the timeout value specified for this
listener in the CICS Sockets configuration file.

System Action: Send an error message to the client and close the socket.

User Response: Determine the reason for the delay in the server transaction. Possible causes are an overloaded
CICS system or excessive processing in the server transaction before the takesocket is issued. Correct the situation
and retry.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1300E • EZY1303I

Appendix D. CICS sockets messages 291

EZY1304I mm/dd/yy hh:mm:ss UNEXPECTED INPUT EVENT TRANSACTION tran PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The listener received data from the client after the end of the transaction input message.

System Action: The listener ignores this data.

User Response: Ensure that the minimum message length specification for this listener in the CICS Sockets
Configuration file is correct. If it is, determine why the client is sending this additional data.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1305E mm/dd/yy hh:mm:ss UNEXPECTED EXCEPTION EVENT TRANS tran PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The listener received an exception event on this connection other than the event showing a successful
takesocket was issued by the server.

System Action: Ignore the event.

User Response: Ensure the client is not doing anything that would cause an exception event such the use of
out-of-band data.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1306E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm IS NOT DEFINED TRANID= tran
TASKID=xxxxxxxx

Explanation: The security exit specified for this listener in the CICS Sockets configuration file is not defined to CICS.

System Action: Close the socket and terminate the connection.

User Response: Use CICS RDO to define the security exit.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1307E mm/dd/yy hh:mm:ss MAXIMUM # OF SOCKETS USED TRANS= tran TASKID= cicstask ERRNO=
errno

Explanation: All of the sockets allocated to listener transaction xxxx are in use.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: The ACCEPT call is delayed until a socket is available.

User Response: Use the EZAC transaction to increase the number of sockets allocated listener tran and then stop
and restart listener transaction tran.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1304I • EZY1307E

292 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1308E mm/dd/yy hh:mm:ss ACCEPT CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the ACCEPT call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1309E mm/dd/yy hh:mm:ss GIVESOCKET FAILURE TRANS tran TASKID= xxxxxxxx ERRNO= errno INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction tran experienced a failure on the GIVESOCKET call.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction tran terminates.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1310E mm/dd/yy hh:mm:ss IC VALUE NOT NUMERIC TRANID= tran PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The interval specified in the transaction input message contains one or more non-numeric characters.

System Action: The interval is ignored, i.e. the transaction is started immediately.

User Response: Correct the client program which is sending this transaction input message.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1311E mm/dd/yy hh:mm:ss CICS TRANID tran NOT AUTHORIZED PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: The transaction name specified in the transaction input message is not RSL authorized.

System Action: The transaction is not started.

User Response: Correct the CICS transaction definition if the transaction should be authorized or the client program
if it is sending the wrong transaction name.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1308E • EZY1311E

Appendix D. CICS sockets messages 293

EZY1312E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm CANNOT BE LOADED TRANID= tran
TASKID=cicstask

Explanation: Listener transaction tran experienced a failure when it attempted to load security exit program
mmmmmmmm.

System Action: Listener transaction tran continues but the server transaction associated with this transaction input
message is not started.

User Response: Use CEMT to determine the status of the exit program and correct whatever problems are found.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1313E mm/dd/yy hh:mm:ss LISTENER NOT AUTHORIZED TO ACCESS SECURITY EXIT mmmmmmmm
TRANID= tran TASKID=xxxxxxxx

Explanation: Listener transaction tran is not authorized to access security exit program mmmmmmmm.

System Action: Listener transaction tran continues but the server transaction associated with this transaction input
message is not started.

User Response: If the security exit program name is incorrect, use EZAC to correct the definition of this listener on
the CICS Sockets Configuration file. If the security exit program is correct, use the CICS RDO facility to authorize
listener transaction xxxx to use security exit program mmmmmmmm.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1314E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm IS DISABLED TRANID= tran TASKID=xxxxxxxx

Explanation: Security exit program mmmmmmmm is disabled.

System Action: Listener transaction tran continues but the server transaction associated with this transaction input
message is not started.

User Response: Use CEMT to enable the security exit program.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1315E mm/dd/yy hh:mm:ss INVALID TRANSID tran PARTNER INET ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The transaction input message from the client specified transaction tran but this transaction is not
defined to CICS.

System Action: Listener transaction tran continues but the server transaction associated with this transaction input
message is not started.

User Response: If the transaction name is incorrect, correct the client program. If the transaction name is correct,
correct the CICS transaction definition.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1312E • EZY1315E

294 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1316E mm/dd/yy hh:mm:ss TRANSID tran IS DISABLED PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Transaction xxxxxxxx is disabled.

System Action: Listener transaction tran continues but the server transaction associated with this transaction input
message is not started.

User Response: Use CEMT to enable the server transaction.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1317E mm/dd/yy hh:mm:ss TRANSID tran IS NOT AUTHORIZED PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction tran is not authorized to start the transaction name specified in the transaction
input message.

System Action: The transaction is not started.

User Response: Authorize listener transaction tran to start the transaction.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1318E mm/dd/yy hh:mm:ss TD START SUCCESSFUL QUEUEID= qqqq

Explanation: The Listener transaction started a server transaction through transient data queue qqqq.

System Action: Listener transaction continues and the server transaction is ready to start.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1319E mm/dd/yy hh:mm:ss QIDER FOR TD DESTINATION qqqq PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: The listener transaction was unable to start CICS transaction through transient data queue qqqq.
DFHRESP was QIDERR.

System Action: The listener transaction continues.

User Response: If the queue name is incorrect, correct the client program sending this transaction input message. If
the queue name is correct, correct the CICS Destination Control Table.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1320E mm/dd/yy hh:mm:ss I/O ERROR FOR TD DESTINATION xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction through transient data queue xxxx.
DFHRESP was IOERR.

System Action: Listener transaction xxxx continues.

EZY1316E • EZY1320E

Appendix D. CICS sockets messages 295

User Response: Contact the CICS Systems Programmer.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1321E mm/dd/yy hh:mm:ss LENGTH ERROR FOR TD DESTINATION xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction through transient data queue xxxx.
DFHRESP was LENGERR.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer. The minimum length for this queue should be greater than
72.

System Programmer Response: Change definition of Transient Data Queue to accommodate length of this
message.

Module: EZACIC02

Destination: LISTENER

EZY1322E mm/dd/yy hh:mm:ss TD DESTINATION xxxx DISABLED PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction through transient data queue xxxx.
DFHRESP was DISABLED.

System Action: Listener transaction xxxx continues.

User Response: Use CEMT to enable the destination.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1323E mm/dd/yy hh:mm:ss TD DESTINATION xxxx OUT OF SPACE PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction through transient data queue xxxx.
DFHRESP was NOSPACE.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Allocate space for this Transient Data Queue.

Module: EZACIC02

Destination: LISTENER

EZY1324E mm/dd/yy hh:mm:ss TD START FAILED QUEUE ID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction through transient data queue xxxx.
DFHRESP was 99.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Determine the problem with the Transient Data Queue and correct it.

Module: EZACIC02

EZY1321E • EZY1324E

296 z/OS V1R4.0 CS: IP CICS Sockets Guide

Destination: LISTENER

EZY1325I mm/dd/yy hh:mm:ss START SUCCESSFUL TRANID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was able to start CICS transaction xxxx transient data queue xxxx.

System Action: Listener transaction xxxx continues.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1326E mm/dd/yy hh:mm:ss START I/O ERROR TRANID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was IOERR.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Determine the cause of the I/O error and correct it.

Module: EZACIC02

Destination: LISTENER

EZY1327E mm/dd/yy hh:mm:ss START TRANSACTION ID xxxx INVALID PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was TRANSIDERR.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Check the transaction definition in RDO to ensure it is correct.

Module: EZACIC02

Destination: LISTENER

EZY1328E mm/dd/yy hh:mm:ss START TRANSACTION ID xxxx NOT AUTHORIZED PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was NOTAUTH.

System Action: Listener transaction xxxx continues.

User Response: If the transaction ID is incorrect, correct the client program which sent this transaction input
message. If the transaction ID is correct, authorize listener transaction xxxx to start this transaction.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1329E mm/dd/yy hh:mm:ss START FAILED (99) TRANSID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was 99.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

EZY1325I • EZY1329E

Appendix D. CICS sockets messages 297

System Programmer Response: Check the transaction definition in RDO. Look for associated messages which
might indicate why the transaction would not start.

Module: EZACIC02

Destination: LISTENER

EZY1330E mm/dd/yy hh:mm:ss IC START SUCCESSFUL TRANID= xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was able to start CICS transaction xxxx.

System Action: Listener transaction xxxx continues.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1331E mm/dd/yy hh:mm:ss IC START I/O ERROR TRANID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was IOERR.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Look for other messages that provide specific information on the I/O error and
correct the problem.

Module: EZACIC02

Destination: LISTENER

EZY1332E mm/dd/yy hh:mm:ss IC START INVALID REQUEST TRANID= xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was INVREQ.

System Action: Listener transaction xxxx continues.

User Response: Contact the IBM Software Support Center.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1333E mm/dd/yy hh:mm:ss IC START FAILED (99) TRANID= xxxx PARTNER INET ADDR=xxx.xxx.xxx.xxx
PORT=xxxxxx

Explanation: Listener transaction xxxx was unable to start CICS transaction xxxx. DFHRESP was 99.

System Action: Listener transaction xxxx continues.

User Response: Contact the CICS Systems Programmer.

System Programmer Response: Check the RDO definition of the transaction. Contact the IBM Software Support
Center.

Module: EZACIC02

Destination: LISTENER

EZY1330E • EZY1333E

298 z/OS V1R4.0 CS: IP CICS Sockets Guide

EZY1334E mm/dd/yy hh:mm:ss INVALID USER TRANID=xxxx PARTNER INET ADDR = xxx.xxx.xxx.xxx PORT =
xxxxxx

Explanation: This message is issued only for CICS 4.1 and above. It indicates that the user security exit has given
the Listener an invalid USERID field.

System Action: The server transaction does not start.

User Response: Correct the invalid USERID in the security exit.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1335E mm/dd/yy hh:mm:ss WRITE FAILED ERRNO= errno TRANID= xxxxx. PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx had a failure on a WRITE command.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction xxxx continues.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1336E mm/dd/yy hh:mm:ss TAKESOCKET FAILURE TRANS xxxx TASKID= cicstran ERRNO= errno INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: Listener transaction xxxx had a failure on a TAKESOCKET command.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

System Action: Listener transaction xxxx continues.

User Response: Use the errno value to determine the cause of the failure.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1337E mm/dd/yy hh:mm:ss CICS IN QUIESCE, LISTENER TERMINATING TRANSID= tran TASKID= cicstask

Explanation: Listener transaction tran is terminating because it detected a CICS quiesce in progress.

System Action: Listener transaction tran terminates.

User Response: None.

System Programmer Response: None.

Module: EZACIC02

Destination: LISTENER

EZY1334E • EZY1337E

Appendix D. CICS sockets messages 299

EZY1338E mm/dd/yy hh:mm:ss PROGRAM xxxxxxxx NOT FOUND TRANID= xxxx PARTNER INET
ADDR=xxx.xxx.xxx.xxx PORT=xxxxxx

Explanation: The Listener checked the status of the program associated with the transaction. It was not found.

System Action: Listener continues.

User Response: If the transaction ID is incorrect, correct the client program that sent the transaction input message.
If the transaction ID is correct, check the transaction and program definitions in CICS.

System Programmer Response: None.

Module: EZACIC02

EZY1339E mm/dd/yy hh:mm:ss EXIT PROGRAM (EZACIC01) IS NOT ENABLED. DISABLE IGNORED
TERM=term TRAN=tranxxx

Explanation: A termination of the CICS Sockets Interface was requested but the interface is not enabled.

System Action: The termination request is ignored.

User Response: None.

System Programmer Response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1340E mm/dd/yy hh:mm:ss API ALREADY QUIESCING DUE TO PREVIOUS REQ. EZAO IGNORED
TERM=term TRAN=tranxxx

Explanation: A request for a quiesce of the CICS Sockets interface has been made but one is already is progress.

System Action: Ignore the second request.

User Response: None.

System Programmer Response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1341E mm/dd/yy hh:mm:ss API ALREADY IN IMMED MODE DUE TO PREV. REQ. EZAO IGNORED
TERM=term TRAN=tranxxx

Explanation: A request for an immediate of the CICS Sockets interface has been made but one is already is
progress.

System Action: Ignore the second request.

User Response: None.

System Programmer Response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1342I mm/dd/yy hh:mm:ss DISABLE DELAYED UNTIL ALL USING TASKS COMPLETE TERM=term
TRAN=tranxxx

Explanation: A quiesce is in progress and is waiting for the completion of all outstanding CICS tasks using the CICS
sockets interface.

System Action: Continue with the quiesce.

User Response: None.

System Programmer Response: None.

EZY1338E • EZY1342I

300 z/OS V1R4.0 CS: IP CICS Sockets Guide

Module: EZACIC22

Destination: TERMINATION

EZY1343I mm/dd/yy hh:mm:ss CICS/SOCKETS INTERFACE IMMEDIATELY DISABLED TERM=term
TRAN=tranxxx

Explanation: A request for immediate termination of the CICS Sockets Interface has been successfully completed.

System Action: Terminate the CICS Sockets Interface.

User Response: None.

System Programmer Response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1344I mm/dd/yy hh:mm:ss CICS/SOCKETS INTERFACE QUIESCENTLY DISABLED TERM=term
TRAN=tranxxx

Explanation: A request for deferred termination of the CICS Sockets Interface has been successfully completed.

System Action: Terminate the CICS Sockets Interface.

User Response: None.

System Programmer Response: None.

Module: EZACIC22

EZY1345E mm/dd/yy hh:mm:ss CICS/SOCKETS WLM REGISTER FAILURE. RETURN CODE = return_code,
GROUP = groupname, LISTNER = list

Explanation: The CICS listener received an error response when attempting to register WLM group with the
Workload manager.

mm/dd/yy hh:mm:ss
Date and time of the message.

return_code
The return code from the WLM registration.

groupname
Name of the WLM group.

list Name of the CICS listener.

System Action: The listener continues initialization but will not use groupname to participate in workload connection
balancing.

User Response: Verify that the WLM group name is correct and correctly defined to the Workload manager. If it is
incorrect, either change it in the EZACICD TYPE=LISTENER macro that was used to define the listener, or change it
via the EZAC transaction. See the z/OS MVS Programming: Workload Management Services for more information
about return_code.

System Programmer Response: None

Module: EZACIC12

EZY1346E mm/dd/yy hh:mm:ss CICS SOCKETS WLM DEREGISTER FAILED RETURN CODE = return_code,
GROUP = groupname, LISTNER = list

Explanation: The CICS listener received an error response when attempting to deregister WLM group with the
Workload manager.

mm/dd/yy hh:mm:ss
Date and time of the message.

EZY1343I • EZY1346E

Appendix D. CICS sockets messages 301

return_code
The return code from the WLM deregistration.

groupname
Name of the WLM group.

list Name of the CICS listener.

System Action: The listener continues termination.

User Response: See the z/OS MVS Programming: Workload Management Services for more information about
return_code.

System Programmer Response: None.

Module: EZACIC12

EZY1347I mm/dd/yy hh:mm:ss PROGRAM programname ASSUMED TO BE AUTOINSTALLED
TRANID=transactionid IP ADDR=inetaddress PORT=portnumber

Explanation: The Listener checked the status of the program associated with the transaction. It was not found. Since
program autoinstall is active in the CICS region, the Listener assumes that the program definition will automatically be
installed by CICS.

mm/dd/yy
The date (month/day/year) of the message.

hh:mm:ss
The time (hours:minutes:seconds) of the message.

programname
The name of the undefined program which is associated with the transaction requested by the connecting
client.

transactionid
The name of the transaction that was requested by the connecting client.

inetaddress
The internet address of the connecting client.

portnumber
The connecting client’s port number.

System Action: Listener continues.

User Response: None.

System Programmer Response: Verify that the program name in the transaction definition is correct. Verify that the
program is intended to be autoinstalled rather than explicitly defined in the PPT.

Module: EZACIC02

Destination: LISTENER

EZY1348E mm/dd/yy hh:mm:ss INVALID SOCKET FUNCTION function ERRNO errno TRAN tranid TASK taskid

Explanation: The task related user exit (TRUE) detected an invalid socket function on a call request from the CICS
application program.

mm/dd/yy is the date (month/day/year) of the message.

hh:mm:ss is the time (hours:minutes:seconds) of the message.

function is the invalid socket function.

errno is the UNIX System Services Return Code. These return codes are listed and described in the z/OS UNIX
System Services Messages and Codes.

tranid is the name of the CICS transaction.

taskid is the CICS task ID number.

EZY1347I • EZY1348E

302 z/OS V1R4.0 CS: IP CICS Sockets Guide

||

|
|

|

|

|

|
|

|

|

System Action: The TRUE is disabled and the task abends with an AEY9 CICS abend code.

User Response: Correct the invalid socket function and retry.

System Programmer Response: None.

Module: Task Related User Exit (TRUE)

Destination: EZACIC01

Appendix D. CICS sockets messages 303

|

|

|

|

|

304 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix E. Sample programs

This appendix contains samples of EZACICSC and EZACICSS.

EZACICSC
The following COBOL socket program is in the hlq.SEZAINST data set.
* $SEG(EZACICSC)
--
* *
* Module Name : EZACICSC *
* *
* Description : *
* *
* This is a sample CICS/TCP application program. It issues*
* TAKESOCKET to obtain the socket passed from MASTER *
* SERVER and perform dialog function with CLIENT program. *
* *
* COPYRIGHT = LICENSED MATERIALS - PROPERTY OF IBM *
* 5655-HAL (C) COPYRIGHT IBM CORP. 1993 *
* This module is restricted materials of IBM *
* REFER TO IBM COPYRIGHT INSTRUCTIONS. *
* *
* Status : Version 3, Release 0, Mod 0 *
* *
* *
--
*
IDENTIFICATION DIVISION.
PROGRAM-ID. EZACICSC.
ENVIRONMENT DIVISION.
DATA DIVISION.
*
WORKING-STORAGE SECTION.
77 TASK-START PIC X(40)

VALUE IS ’TASK STARTING THRU CICS/TCPIP INTERFACE ’.
77 TAKE-ERR PIC X(24)

VALUE IS ’ TAKESOCKET FAIL ’.
77 TAKE-SUCCESS PIC X(24)

VALUE IS ’ TAKESOCKET SUCCESSFUL ’.
77 READ-ERR PIC X(24)

VALUE IS ’ READ SOCKET FAIL ’.
77 READ-SUCCESS PIC X(24)

VALUE IS ’ READ SOCKET SUCCESSFUL ’.
77 WRITE-ERR PIC X(24)

VALUE IS ’ WRITE SOCKET FAIL ’.
77 WRITE-END-ERR PIC X(32)

VALUE IS ’ WRITE SOCKET FAIL - PGM END MSG’.
77 WRITE-SUCCESS PIC X(25)

VALUE IS ’ WRITE SOCKET SUCCESSFUL ’.
77 CLOS-ERR PIC X(24)

VALUE IS ’ CLOSE SOCKET FAIL ’.
77 CLOS-SUCCESS PIC X(24)

VALUE IS ’CLOSE SOCKET SUCCESSFUL ’.
77 INVREQ-ERR PIC X(24)

VALUE IS ’INTERFACE IS NOT ACTIVE ’.
77 IOERR-ERR PIC X(24)

VALUE IS ’IOERR OCCURRS ’.
77 LENGERR-ERR PIC X(24)

© Copyright IBM Corp. 1994, 2002 305

VALUE IS ’LENGERR ERROR ’.
77 ITEMERR-ERR PIC X(24)

VALUE IS ’ITEMERR ERROR ’.
77 NOSPACE-ERR PIC X(24)

VALUE IS ’NOSPACE CONDITION ’.
77 QIDERR-ERR PIC X(24)

VALUE IS ’QIDERR CONDITION ’.
77 ENDDATA-ERR PIC X(30)

VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.
77 WRKEND PIC X(20)

VALUE ’CONNECTION END ’.
77 WRITE-SW PIC X(1)

VALUE ’N’.
01 SOKET-FUNCTIONS.

02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’.
02 SOKET-BIND PIC X(16) VALUE ’BIND ’.
02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’.
02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’.
02 SOKET-FCNTL PIC X(16) VALUE ’FCNTL ’.
02 SOKET-GETCLIENTID PIC X(16) VALUE ’GETCLIENTID ’.
02 SOKET-GETHOSTBYADDR PIC X(16) VALUE ’GETHOSTBYADDR ’.
02 SOKET-GETHOSTBYNAME PIC X(16) VALUE ’GETHOSTBYNAME ’.
02 SOKET-GETHOSTID PIC X(16) VALUE ’GETHOSTID ’.
02 SOKET-GETHOSTNAME PIC X(16) VALUE ’GETHOSTNAME ’.
02 SOKET-GETPEERNAME PIC X(16) VALUE ’GETPEERNAME ’.
02 SOKET-GETSOCKNAME PIC X(16) VALUE ’GETSOCKNAME ’.
02 SOKET-GETSOCKOPT PIC X(16) VALUE ’GETSOCKOPT ’.
02 SOKET-GIVESOCKET PIC X(16) VALUE ’GIVESOCKET ’.
02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’.
02 SOKET-IOCTL PIC X(16) VALUE ’IOCTL ’.
02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’.
02 SOKET-READ PIC X(16) VALUE ’READ ’.
02 SOKET-RECV PIC X(16) VALUE ’RECV ’.
02 SOKET-RECVFROM PIC X(16) VALUE ’RECVFROM ’.
02 SOKET-SELECT PIC X(16) VALUE ’SELECT ’.
02 SOKET-SEND PIC X(16) VALUE ’SEND ’.
02 SOKET-SENDTO PIC X(16) VALUE ’SENDTO ’.
02 SOKET-SETSOCKOPT PIC X(16) VALUE ’SETSOCKOPT ’.
02 SOKET-SHUTDOWN PIC X(16) VALUE ’SHUTDOWN ’.
02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’.
02 SOKET-TAKESOCKET PIC X(16) VALUE ’TAKESOCKET ’.
02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’.
02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’.

01 WRKMSG.
02 WRKM PIC X(14)

VALUE IS ’DATA RECEIVED ’.

* program’s variables *

77 SUBTRACE PIC X(8) VALUE ’CONTRACE’.
77 BITMASK-TOKEN PIC X(16) VALUE ’TCPIPBITMASKCOBL’.
77 TOEBCDIC-TOKEN PIC X(16) VALUE ’TCPIPTOEBCDICXLT’.
77 TOASCII-TOKEN PIC X(16) VALUE ’TCPIPTOASCIIXLAT’.
77 RESPONSE PIC 9(9) COMP.
77 TASK-FLAG PIC X(1) VALUE ’0’.
77 TAKE-SOCKET PIC 9(8) COMP.
77 SOCKID PIC 9(4) COMP.
77 SOCKID-FWD PIC 9(8) COMP.
77 ERRNO PIC 9(8) COMP.

306 z/OS V1R4.0 CS: IP CICS Sockets Guide

77 RETCODE PIC S9(8) COMP.
77 AF-INET PIC 9(8) COMP VALUE 2.
01 TCP-BUF.

05 TCP-BUF-H PIC X(3) VALUE IS SPACES.
05 TCP-BUF-DATA PIC X(197) VALUE IS SPACES.

77 TCPLENG PIC 9(8) COMP.
77 RECV-FLAG PIC 9(8) COMP.
77 CLENG PIC 9(4) COMP.
77 CNT PIC 9(4) COMP.

01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.
01 DUMMY-MASK REDEFINES ZERO-PARM.

05 DUMYMASK PIC X(8).
05 ZERO-FLD-8 PIC X(8).

01 ZERO-FLD REDEFINES ZERO-PARM.
05 ZERO-FWRD PIC 9(8) COMP.
05 ZERO-HWRD PIC 9(4) COMP.
05 ZERO-DUM PIC X(10).

01 TD-MSG.
03 TASK-LABEL PIC X(07) VALUE ’TASK # ’.
03 TASK-NUMBER PIC 9(07).
03 TASK-SEP PIC X VALUE ’ ’.
03 CICS-MSG-AREA PIC X(70).

01 CICS-ERR-AREA.
03 ERR-MSG PIC X(24).
03 SOCK-HEADER PIC X(08) VALUE ’ SOCKET=’.
03 ERR-SOCKET PIC 9(05).
03 RETC-HEADER PIC X(09) VALUE ’ RETCDE=-’.
03 ERR-RETCODE PIC 9(05).
03 ERRN-HEADER PIC X(07) VALUE ’ ERRNO=’.
03 ERR-ERRNO PIC 9(05).

*
01 CLIENTID-LSTN.

05 CID-DOMAIN-LSTN PIC 9(8) COMP.
05 CID-NAME-LSTN PIC X(8).
05 CID-SUBTASKNAME-LSTN PIC X(8).
05 CID-RES-LSTN PIC X(20).

01 CLIENTID-APPL.
05 CID-DOMAIN-APPL PIC 9(8) COMP.
05 CID-NAME-APPL PIC X(8).
05 CID-SUBTASKNAME-APPL PIC X(8).
05 CID-RES-APPL PIC X(20).

01 TCPSOCKET-PARM.
05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
05 LSTN-NAME PIC X(8).
05 LSTN-SUBTASKNAME PIC X(8).
05 CLIENT-IN-DATA PIC X(35).
05 FILLER PIC X(1).
05 SOCKADDR-IN.

10 SIN-FAMILY PIC 9(4) COMP.
10 SIN-PORT PIC 9(4) COMP.
10 SIN-ADDR PIC 9(8) COMP.
10 SIN-ZERO PIC X(8).

PROCEDURE DIVISION.

Appendix E. Sample programs 307

EXEC CICS HANDLE CONDITION INVREQ (INVREQ-ERR-SEC)
IOERR (IOERR-SEC)
ENDDATA (ENDDATA-SEC)
LENGERR (LENGERR-SEC)
NOSPACE (NOSPACE-ERR-SEC)
QIDERR (QIDERR-SEC)
ITEMERR (ITEMERR-SEC)

END-EXEC.

PERFORM INITIAL-SEC THRU INITIAL-SEC-EXIT.
PERFORM TAKESOCKET-SEC THRU TAKESOCKET-SEC-EXIT.

MOVE ’0’ TO TASK-FLAG.
PERFORM CLIENT-TASK THRU CLIENT-TASK-EXIT

VARYING CNT FROM 1 BY 1 UNTIL TASK-FLAG = ’1’.

CLOSE-SOCK.

* *
* CLOSE ’accept descriptor’ *
* *

CALL ’EZASOKET’ USING SOKET-CLOSE SOCKID
ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE CLOS-ERR TO ERR-MSG
MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA

ELSE
MOVE CLOS-SUCCESS TO CICS-MSG-AREA.

PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

PGM-EXIT.

IF RETCODE < 0 THEN
EXEC CICS ABEND ABCODE(’TCPC’) END-EXEC.

MOVE SPACES TO CICS-MSG-AREA.
MOVE ’END OF EZACICSC PROGRAM’ TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
EXEC CICS RETURN END-EXEC.
GOBACK.

*
* RECEIVE PASSED PARAMETER WHICH ARE CID *
*

INITIAL-SEC.

MOVE SPACES TO CICS-MSG-AREA.
MOVE 50 TO CLENG.
MOVE ’TCPC TRANSACTION START UP ’ TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

MOVE 72 TO CLENG.

308 z/OS V1R4.0 CS: IP CICS Sockets Guide

EXEC CICS RETRIEVE INTO(TCPSOCKET-PARM) LENGTH(CLENG)
END-EXEC.

INITIAL-SEC-EXIT.
EXIT.

* *
* Perform TCP SOCKET functions by passing socket command to *
* EZASOKET routine. SOCKET command are translated to pre- *
* define integer. *
* *

TAKESOCKET-SEC.

* *
* Issue ’TAKESOCKET’ call to acquire a socket which was *
* given by the LISTENER program. *
* *

MOVE AF-INET TO CID-DOMAIN-LSTN CID-DOMAIN-APPL.

MOVE LSTN-NAME TO CID-NAME-LSTN.
MOVE LSTN-SUBTASKNAME TO CID-SUBTASKNAME-LSTN.
MOVE GIVE-TAKE-SOCKET TO TAKE-SOCKET SOCKID SOCKID-FWD.
CALL ’EZASOKET’ USING SOKET-TAKESOCKET SOCKID

CLIENTID-LSTN ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ’Y’ TO WRITE-SW
MOVE TAKE-ERR TO ERR-MSG
MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE SPACES TO CICS-MSG-AREA
MOVE TAKE-SUCCESS TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

MOVE RETCODE TO SOCKID.
MOVE SPACES TO TCP-BUF.
MOVE TASK-START TO TCP-BUF.
MOVE 50 TO TCPLENG.

*
* REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT
*

CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.

CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG
TCP-BUF ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ’Y’ TO WRITE-SW
MOVE WRITE-ERR TO ERR-MSG

Appendix E. Sample programs 309

MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE WRITE-SUCCESS TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

TAKESOCKET-SEC-EXIT.
EXIT.

CLIENT-TASK.

* *
* Issue ’READV’ socket to receive input data from client *
* *

MOVE LOW-VALUES TO TCP-BUF.
MOVE 200 TO TCPLENG.

CALL ’EZASOKET’ USING SOKET-RECV SOCKID
RECV-FLAG TCPLENG TCP-BUF ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ’Y’ TO WRITE-SW
MOVE READ-ERR TO ERR-MSG
MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE READ-SUCCESS TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

IF TCP-BUF-H = ’END’ OR TCP-BUF-H = ’end’ THEN
MOVE ’1’ TO TASK-FLAG
PERFORM CLIENT-TALK-END THRU CLIENT-TALK-END-EXIT
GO TO CLIENT-TASK-EXIT.

IF RETCODE = 0 THEN
MOVE ’1’ TO TASK-FLAG
GO TO CLIENT-TASK-EXIT.

** ECHO RECEIVING DATA

PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
*
* REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT
*

CALL ’EZACIC05’ USING TOEBCDIC-TOKEN TCP-BUF TCPLENG.
MOVE TCP-BUF TO CICS-MSG-AREA.

MOVE RETCODE TO TCPLENG.
*

310 z/OS V1R4.0 CS: IP CICS Sockets Guide

* REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT
*

CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.
CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

TCP-BUF ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ’Y’ TO WRITE-SW
MOVE WRITE-ERR TO ERR-MSG
MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE WRITE-SUCCESS TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

CLIENT-TASK-EXIT.
EXIT.

WRITE-CICS.
IF WRITE-SW = ’Y’ THEN

MOVE 78 TO CLENG
MOVE EIBTASKN TO TASK-NUMBER
EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(TD-MSG)

LENGTH(CLENG) NOHANDLE
END-EXEC

ELSE
NEXT SENTENCE.

MOVE SPACES TO CICS-MSG-AREA.

WRITE-CICS-EXIT.
EXIT.

CLIENT-TALK-END.
MOVE LOW-VALUES TO TCP-BUF.
MOVE WRKEND TO TCP-BUF CICS-MSG-AREA.

MOVE 50 TO TCPLENG.
*
* REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT
*

CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.
CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

TCP-BUF ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ’Y’ TO WRITE-SW
MOVE WRITE-END-ERR TO ERR-MSG
MOVE SOCKID TO ERR-SOCKET
MOVE RETCODE TO ERR-RETCODE
MOVE ERRNO TO ERR-ERRNO
MOVE CICS-ERR-AREA TO CICS-MSG-AREA
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
GO TO PGM-EXIT.

Appendix E. Sample programs 311

CLIENT-TALK-END-EXIT.
EXIT.

INVREQ-ERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE INVREQ-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

IOERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE IOERR-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

LENGERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE LENGERR-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

NOSPACE-ERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE NOSPACE-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

QIDERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE QIDERR-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

ITEMERR-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE ITEMERR-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

ENDDATA-SEC.
MOVE ’Y’ TO WRITE-SW
MOVE ENDDATA-ERR TO CICS-MSG-AREA.
PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
GO TO PGM-EXIT.

EZACICSS
The following COBOL socket program is in the hlq.SEZAINST data set.

* *
* TCP/IP for MVS *
* *
* Licensed Materials - Property of IBM *
* This product contains "Restricted Materials of IBM" *
* 5735-FAL (C) Copyright IBM Corp. 1991 *
* 5655-HAL (C) Copyright IBM Corp. 1992, 1994. *
* All rights reserved. *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by GSA ADP *
* Schedule *
* Contract with IBM Corp. *
* See IBM Copyright Instructions. *
* *

* $SEG(EZACICSS)
--
* *
* Module Name EZACICSS *

312 z/OS V1R4.0 CS: IP CICS Sockets Guide

* *
* Description This is a sample server program. It *
* establishes a connection between *
* CICS and TCPIP to process client requests.* *
* The server expects the data received *
* from a host / workstation in ASCII. *
* All responses sent by the server to the *
* CLIENT are in ASCII. This server is *
* started using CECI or via the LISTENER. *
* It processes request received from *
* clients for updates to a DB2 database. *
* A client connection is broken when the *
* client transmits an ’END’ token to the *
* server. All processing is terminated *
* when an ’TRM’ token is received from a *
* client. *
* *
* *
--
* *
* LOGIC 1. Establish server setup *
* a). TRUE Active *
* b). CAF Active *
* 2. Assign user specified port at *
* start up or use the program *
* declared default. *
* 3. Initialize the Socket. *
* 4. Bind the port. *
* 5. Set Bit Mask to accept incoming *
* read request. *
* 6. Process request from clients. *
* a) Wait for connection *
* b) Process request until ’END’ *
* token is receive from client. *
* c) Close connection. *
* note The current client request *
* ends when the client closes *
* the connection or sends an *
* ’END’ token to the server. *
* d) If the last request received by *
* the current client is not a *
* request to the server to *
* terminate processing (’TRM’), *
* continue at step 6A. *
* 7. Close the server’s connection. *
* *
--
IDENTIFICATION DIVISION.
PROGRAM-ID. EZACICSS.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* MESSAGES *

77 BITMASK-ERR PIC X(30)

VALUE IS ’BITMASK CONVERSION - FAILED ’.
77 ENDDATA-ERR PIC X(30)

VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.
77 INIT-MSG PIC X(30)

VALUE IS ’INITAPI COMPLETE ’.
77 IOERR-ERR PIC X(30)

VALUE IS ’IOERR OCCURRS ’.
77 ITEMERR-ERR PIC X(30)

VALUE IS ’ITEMERR ERROR ’.
77 KEYWORD-ERR PIC X(30)

VALUE IS ’INPUT KEYWORD ERROR ’.

Appendix E. Sample programs 313

77 LENGERR-ERR PIC X(30)
VALUE IS ’LENGERR ERROR ’.

77 NOSPACE-ERR PIC X(30)
VALUE IS ’NOSPACE CONDITION ’.

77 NULL-DATA PIC X(30)
VALUE IS ’READ NULL DATA ’.

77 QIDERR-ERR PIC X(30)
VALUE IS ’TRANSIENT DATA QUEUE NOT FOUND’.

77 START-MSG PIC X(30)
VALUE IS ’SERVER PROGRAM IS STARTING ’.

77 TCP-EXIT-ERR PIC X(30)
VALUE IS ’SERVER STOPPED:TRUE NOT ACTIVE’.

77 TCP-SERVER-OFF PIC X(30)
VALUE IS ’SERVER IS ENDING ’.

77 TS-INVREQ-ERR PIC X(30)
VALUE IS ’WRITE TS FAILED - INVREQ ’.

77 TS-NOTAUTH-ERR PIC X(30)
VALUE IS ’WRITE TS FAILED - NOTAUTH ’.

77 TS-IOERR-ERR PIC X(30)
VALUE IS ’WRITE TS FAILED - IOERR ’.

77 WRITETS-ERR PIC X(30)
VALUE IS ’WRITE TS FAILED ’.

01 ACCEPT-ERR.
05 ACCEPT-ERR-M PIC X(25)

VALUE IS ’SOCKET CALL FAIL - ACCEPT’.
05 FILLER PIC X(9)

VALUE IS ’ ERRNO = ’.
05 ACCEPT-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(13)

VALUE IS SPACES.
01 BIND-ERR.

05 BIND-ERR-M PIC X(25)
VALUE IS ’SOCKET CALL FAIL - BIND’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 BIND-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(13)

VALUE IS SPACES.
01 CLOSE-ERR.

05 CLOSE-ERR-M PIC X(30)
VALUE IS ’CLOSE SOCKET DESCRIPTOR FAILED’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 CLOSE-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(8)

VALUE IS SPACES.
01 DB2END.

05 FILLER PIC X(16)
VALUE IS ’DB2 PROCESS ENDS’.

05 FILLER PIC X(39)
VALUE IS SPACES.

01 DB2-CAF-ERR.
05 FILLER PIC X(24)

VALUE IS ’CONNECT NOT ESTABLISHED ’.
05 FILLER PIC X(30)

VALUE IS ’ATTACHMENT FACILITY NOT ACTIVE’.
05 FILLER PIC X(1)

VALUE IS SPACES.
01 DB2MSG.

05 DB2-ACT PIC X(6) VALUE SPACES.
88 DAINSERT VALUE ’INSERT’.
88 DADELETE VALUE ’DELETE’.
88 DAUPDATE VALUE ’UPDATE’.

05 DB2M PIC X(18)
VALUE IS ’ COMPLETE - #ROWS ’.

05 DB2M-VAR PIC X(10).
05 FILLER PIC X(2) VALUE SPACES.

314 z/OS V1R4.0 CS: IP CICS Sockets Guide

05 DB2CODE PIC -(9)9.
05 FILLER PIC X(11)

VALUE IS SPACES.
01 INITAPI-ERR.

05 INITAPI-ERR-M PIC X(35)
VALUE IS ’INITAPI FAILED - SERVER NOT STARTED’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 INIT-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(3)

VALUE IS SPACES.
01 LISTEN-ERR.

05 LISTEN-ERR-M PIC X(25)
VALUE IS ’SOCKET CALL FAIL - LISTEN’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 LISTEN-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(13)

VALUE IS SPACES.
01 LISTEN-SUCC.

05 FILLER PIC X(34)
VALUE IS ’READY TO ACCEPT REQUEST ON PORT: ’.

05 BIND-PORT PIC X(4).
05 FILLER PIC X(10) VALUE SPACES.
05 FILLER PIC X(7)

VALUE IS SPACES.
01 PORTNUM-ERR.

05 INVALID-PORT PIC X(33)
VALUE IS ’SERVER NOT STARTED - INVALID PORT’.

05 FILLER PIC X(10)
VALUE IS ’ NUMBER = ’.

05 PORT-ERRNUM PIC X(4).
05 FILLER PIC X(8)

VALUE IS SPACES.
01 RECVFROM-ERR.

05 RECVFROM-ERR-M PIC X(24)
VALUE IS ’RECEIVE SOCKET CALL FAIL’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 RECVFROM-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(14)

VALUE IS SPACES.
01 SELECT-ERR.

05 SELECT-ERR-M PIC X(24)
VALUE IS ’SELECT CALL FAIL ’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 SELECT-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(14)

VALUE IS SPACES.
01 SQL-ERROR.

05 FILLER PIC X(35)
VALUE IS ’SQLERR -PROG TERMINATION,SQLCODE = ’.

05 SQL-ERR-CODE PIC -(9)9.
05 FILLER PIC X(11)

VALUE IS SPACES.
01 SOCKET-ERR.

05 SOCKET-ERR-M PIC X(25)
VALUE IS ’SOCKET CALL FAIL - SOCKET’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 SOCKET-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(13)

VALUE IS SPACES.
01 TAKE-ERR.

05 TAKE-ERR-M PIC X(17)
VALUE IS ’TAKESOCKET FAILED’.

Appendix E. Sample programs 315

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 TAKE-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(21)

VALUE IS SPACES.
01 WRITE-ERR.

05 WRITE-ERR-M PIC X(33)
VALUE IS ’WRITE SOCKET FAIL’.

05 FILLER PIC X(9)
VALUE IS ’ ERRNO = ’.

05 WRITE-ERRNO PIC 9(8) DISPLAY.
05 FILLER PIC X(21)

VALUE IS SPACES.

* PROGRAM’S CONSTANTS *

77 TCP-TOKEN PIC X(16) VALUE ’TCPIPIUCVSTREAMS’.
77 BITMASK-TOKEN PIC X(16) VALUE ’TCPIPBITMASKCOBL’.
77 TOEBCDIC-TOKEN PIC X(16) VALUE ’TCPIPTOEBCDICXLT’.
77 TOASCII-TOKEN PIC X(16) VALUE ’TCPIPTOASCIIXLAT’.
77 CONTRACE PIC X(8) VALUE ’CONTRACE’.
77 CTOB PIC X(4) VALUE ’CTOB’.
77 DEL-ID PIC X(1) VALUE ’,’.
77 BACKLOG PIC 9(8) VALUE 5 COMP.
77 NONZERO-FWRD PIC 9(8) VALUE 256.
77 TCP-FLAG PIC 9(8) COMP VALUE 0.
77 SOCK-TYPE PIC 9(8) COMP VALUE 1.
77 AF-INET PIC 9(8) COMP VALUE 2.
77 NUM-FDS PIC 9(8) COMP VALUE 5.
77 LOM PIC 9(4) COMP VALUE 4.
77 CECI-LENG PIC 9(8) COMP VALUE 5.
77 BUFFER-LENG PIC 9(8) COMP VALUE 55.
77 GWLENG PIC 9(4) COMP VALUE 256.
77 DEFAULT-PORT PIC X(4) VALUE ’????’.

88 DEFAULT-SPECIFIED VALUE ’1950’.
01 COMMAND.

05 INITAPI-CMD PIC 9(4) COMP VALUE 0.
05 ACCEPT-CMD PIC 9(4) COMP VALUE 1.
05 BIND-CMD PIC 9(4) COMP VALUE 2.
05 CLOSE-CMD PIC 9(4) COMP VALUE 3.
05 CONNECT-CMD PIC 9(4) COMP VALUE 4.
05 FCNTL-CMD PIC 9(4) COMP VALUE 5.
05 GETHOSTID-CMD PIC 9(4) COMP VALUE 7.
05 GETHOSTNAME-CMD PIC 9(4) COMP VALUE 8.
05 GETPEERNAME-CMD PIC 9(4) COMP VALUE 9.
05 GETSOCKNAME-CMD PIC 9(4) COMP VALUE 10.
05 GETSOCKOPT-CMD PIC 9(4) COMP VALUE 11.
05 IOCTL-CMD PIC 9(4) COMP VALUE 12.
05 LISTEN-CMD PIC 9(4) COMP VALUE 13.
05 READ-CMD PIC 9(4) COMP VALUE 14.
05 RECVFROM-CMD PIC 9(4) COMP VALUE 16.
05 SELECT-CMD PIC 9(4) COMP VALUE 19.
05 SELECTX-CMD PIC 9(4) COMP VALUE 19.
05 SEND-CMD PIC 9(4) COMP VALUE 20.
05 SENDTO-CMD PIC 9(4) COMP VALUE 22.
05 SETSOCKOPT-CMD PIC 9(4) COMP VALUE 23.
05 SHUTDOWN-CMD PIC 9(4) COMP VALUE 24.
05 SOCKET-CMD PIC 9(4) COMP VALUE 25.
05 WRITE-CMD PIC 9(4) COMP VALUE 26.
05 GETCLIENTID-CMD PIC 9(4) COMP VALUE 30.
05 GIVESOCKET-CMD PIC 9(4) COMP VALUE 31.
05 TAKESOCKET-CMD PIC 9(4) COMP VALUE 32.

* PROGRAM’S VARIABLES *

77 PROTOCOL PIC 9(8) COMP VALUE 0.
77 SRV-SOCKID PIC 9(4) COMP VALUE 0.

316 z/OS V1R4.0 CS: IP CICS Sockets Guide

77 SRV-SOCKID-FWD PIC 9(8) COMP VALUE 0.
77 CLI-SOCKID PIC 9(4) COMP VALUE 0.
77 CLI-SOCKID-FWD PIC 9(8) COMP VALUE 0.
77 L-DESC PIC 9(8) COMP VALUE 0.
77 LENG PIC 9(4) COMP.
77 WSLENG PIC 9(4) COMP.
77 RESPONSE PIC 9(9) COMP.
77 TSTAMP PIC 9(8).
77 TASK-FLAG PIC X(1) VALUE ’0’.

88 TASK-END VALUE ’1’.
88 TASK-TERM VALUE ’2’.

77 GWPTR PIC S9(8) COMP.
77 WSPTR PIC S9(8) COMP.
77 TCP-INDICATOR PIC X(1) VALUE IS SPACE.
77 TAKESOCKET-SWITCH PIC X(1) VALUE IS SPACE.

88 DOTAKESOCKET VALUE ’1’.
77 TCPLENG PIC 9(8) COMP VALUE 0.
77 ERRNO PIC 9(8) COMP.
77 RETCODE PIC S9(8) COMP.
77 TRANS PIC X(4).
01 CLIENTID-LSTN.

05 CID-DOMAIN-LSTN PIC 9(8) COMP VALUE 2.
05 CID-LSTN-INFO.

10 CID-NAME-LSTN PIC X(8).
10 CID-SUBTNAM-LSTN PIC X(8).

05 CID-RES-LSTN PIC X(20) VALUE LOW-VALUES.
01 INITAPI-SOCKET.

05 INIT-API2 PIC X(8) VALUE ’IUCVAPI ’.
05 INIT-API3 PIC 9(4) COMP VALUE 50.
05 INIT-API4 PIC 9(4) COMP VALUE 2.
05 INIT-SUBTASKID.

10 SUBTASKNO PIC X(7) VALUE LOW-VALUES.
10 SUBT-CHAR PIC A(1) VALUE ’L’.

05 INIT-API6 PIC 9(8) COMP VALUE 0.
05 NFDS PIC 9(8) COMP.

01 PORT-RECORD.
05 PORT PIC X(4).
05 FILLER PIC X(36).

01 SELECT-CSOCKET.
05 READMASK PIC X(4) VALUE LOW-VALUES.
05 DUMYMASK PIC X(4) VALUE LOW-VALUES.
05 REPLY-RDMASK PIC X(4) VALUE LOW-VALUES.
05 REPLY-RDMASK-FF PIC X(4).

01 SOCKADDR-IN.
05 SIN-FAMILY PIC 9(4) COMP VALUE 0.
05 SIN-PORT PIC 9(4) COMP VALUE 0.
05 SIN-ADDR PIC 9(8) COMP VALUE 0.
05 SIN-ZERO PIC X(8) VALUE LOW-VALUES.

01 SOCKET-CONV.
05 SOCKET-TBL OCCURS 6 TIMES.

10 SOCK-CHAR PIC X(1) VALUE ’0’.
01 TCP-BUF.

05 TCP-BUF-H PIC X(3).
05 TCP-BUF-DATA PIC X(52).

01 TCPCICS-MSG-AREA.
02 TCPCICS-MSG-1.

05 MSGDATE PIC 9(8).
05 FILLER PIC X(2) VALUE SPACES.
05 MSGTIME PIC 9(8).
05 FILLER PIC X(2) VALUE SPACES.
05 MODULE PIC X(10) VALUE ’EZACICSS: ’.

02 TCPCICS-MSG-2.
05 MSG-AREA PIC X(55) VALUE SPACES.

01 TCP-INPUT-DATA PIC X(85) VALUE LOW-VALUES.
01 TCPSOCKET-PARM REDEFINES TCP-INPUT-DATA.

05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
05 CLIENTID-PARM.

Appendix E. Sample programs 317

10 LSTN-NAME PIC X(8).
10 LSTN-SUBTASKNAME PIC X(8).

05 CLIENT-DATA-FLD.
10 CLIENT-IN-DATA PIC X(35).
10 FILLER PIC X(1).

05 SOCKADDR-IN-PARM.
10 SIN-FAMILY-PARM PIC 9(4).
10 SIN-PORT-PARM PIC 9(4).
10 SIN-ADDR-PARM PIC 9(8) COMP.
10 SIN-ZERO-PARM PIC X(8).

01 TIMEVAL.
02 TVSEC PIC 9(8) COMP VALUE 180.
02 TVUSEC PIC 9(8) COMP VALUE 0.

01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.
01 ZERO-FLD REDEFINES ZERO-PARM.

02 ZERO-8 PIC X(8).
02 ZERO-DUM PIC X(2).
02 ZERO-HWRD PIC 9(4) COMP.
02 ZERO-FWRD PIC 9(8) COMP.

* *** *
* INPUT FORMAT FOR UPDATING THE SAMPLE DB2 TABLE *
* *** *
01 INPUT-DEPT.

05 IN-ACT PIC X(3).
05 IN-DEPTNO PIC X(3).
05 IN-DEPTN PIC X(36).
05 IN-MGRNO PIC X(6).
05 IN-ADMRDEPT PIC X(3).

* SQL STATEMENTS: SQL COMMUNICATION AREA *

EXEC SQL INCLUDE SQLCA END-EXEC.

* SQL STATEMENTS: DEPARTMENT TABLE CREATE STATEMENT FOR DB2 *
* *
* CREATE TABLE TCPCICS.DEPT *
* (DEPTNO CHAR(03), *
* DEPTNAME CHAR(36), *
* MGRNO CHAR(06), *
* ADMRDEPT CHAR(03)); *
* *

* DCLGEN GENERATED FROM DB2 FOR THE DEPARTMENT TABLE. *

* EXEC SQL INCLUDE DCLDEPT END-EXEC.
**
* DCLGEN TABLE(TCPCICS.DEPT) *
* LIBRARY(SYSADM.CICS.SPUFI(DCLDEPT)) *
* LANGUAGE(COBOL) *
* QUOTE *
* ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS *
**

EXEC SQL DECLARE TCPCICS.DEPT TABLE
(DEPTNO CHAR(3),

DEPTNAME CHAR(36),
MGRNO CHAR(6),
ADMRDEPT CHAR(3)

) END-EXEC.
**
* COBOL DECLARATION FOR TABLE TCPCICS.DEPT *
**
01 DCLDEPT.

10 DEPTNO PIC X(3).
10 DEPTNAME PIC X(36).
10 MGRNO PIC X(6).
10 ADMRDEPT PIC X(3).

**

318 z/OS V1R4.0 CS: IP CICS Sockets Guide

* THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 4 *
**
PROCEDURE DIVISION.

EXEC SQL WHENEVER SQLERROR GO TO SQL-ERROR-ROU END-EXEC.
EXEC SQL WHENEVER SQLWARNING GO TO SQL-ERROR-ROU END-EXEC.
EXEC CICS IGNORE CONDITION TERMERR

EOC
SIGNAL

END-EXEC.
EXEC CICS HANDLE CONDITION ENDDATA (ENDDATA-SEC)

IOERR (IOERR-SEC)
LENGERR (LENGERR-SEC)
NOSPACE (NOSPACE-ERR-SEC)
QIDERR (QIDERR-SEC)

END-EXEC.
MOVE START-MSG TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

* *
* BEFORE SERVER STARTS, TRUE MUST BE ACTIVE. ISSUE ’EXTRACT *
* EXIT’ COMMAND TO CHECK IF TRUE IS ACTIVE OR NOT *
* *

EXEC CICS PUSH HANDLE END-EXEC.
EXEC CICS HANDLE CONDITION

INVEXITREQ(TCP-TRUE-REQ)
END-EXEC.
EXEC CICS EXTRACT EXIT

PROGRAM (’EZACIC01’)
GASET (GWPTR)
GALENGTH(GWLENG)

END-EXEC.
EXEC CICS POP HANDLE END-EXEC.

* *
* CICS ATTACH FACILITY MUST BE STARTED FOR THE APPROPRIATE DB2 *
* SUBSYSTEM BEFORE YOU EXECUTE CICS TRANSACTIONS REQUIRING *
* ACCESS TO DB2 DATABASES. *
* *

EXEC CICS PUSH HANDLE END-EXEC.
EXEC CICS HANDLE CONDITION

INVEXITREQ(DB2-TRUE-REQ)
END-EXEC.
EXEC CICS EXTRACT EXIT

PROGRAM (’DSNCEXT1’)
ENTRYNAME (’DSNCSQL’)
GASET (WSPTR)
GALENGTH (WSLENG)

END-EXEC.
EXEC CICS POP HANDLE END-EXEC.

* *
* AT START UP THE SERVER REQUIRES THE PORT NUMBER FOR TCP/IP *
* IT WILL USE. THE PORT NUMBER SUPPORTED BY THIS SAMPLE IS *
* 4 DIGITS IN LENGTH. *
* *
* INVOCATION: <server>,<port number> *
* LISTENER => SRV2,4000 - OR - SRV2,4 - *
* CECI => CECI START TR(SRV2) FROM(4000) *
* *
* THE LEADING SPACES ARE SIGNIFICANT. *
* *

MOVE EIBTRNID TO TRANS.
EXEC CICS RETRIEVE

INTO (TCP-INPUT-DATA)

Appendix E. Sample programs 319

LENGTH (LENG)
END-EXEC.

* *** *
* THE PORT CAN SPECIFIED IN THE FROM(????) OPTION OF THE CECI *
* COMMAND OR THE DEFAULT PORT IS USED. *
* THE PORT FOR THE LISTENER STARTED SERVER IS THE PORT *
* SPECIFIED IN THE CLIENT-DATA-FLD OR THE DEFAULT PORT *
* IS USED. *
* *** *
* THE DEFAULT PORT MUST BE SET, BY THE PROGRAMMER. *
* *** *

IF LENG < CECI-LENG
THEN MOVE TCP-INPUT-DATA TO PORT
ELSE

MOVE CLIENT-DATA-FLD TO PORT-RECORD
MOVE ’1’ TO TAKESOCKET-SWITCH

END-IF.
INSPECT PORT REPLACING LEADING SPACES BY ’0’.
IF PORT IS NUMERIC

THEN MOVE PORT TO BIND-PORT
ELSE

IF DEFAULT-SPECIFIED
THEN MOVE DEFAULT-PORT TO PORT

BIND-PORT
ELSE

MOVE PORT TO PORT-ERRNUM
MOVE PORTNUM-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

END-IF
END-IF.
IF DOTAKESOCKET

THEN PERFORM LISTENER-STARTED-TASK THRU
LISTENER-STARTED-TASK-EXIT

ELSE PERFORM INIT-SOCKET THRU
INIT-SOCKET-EXIT

END-IF.
PERFORM SCKET-BIND-LSTN THRU SCKET-BIND-LSTN-EXIT.
MOVE 2 TO CLI-SOCKID

CLI-SOCKID-FWD.
MOVE LISTEN-SUCC TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
COMPUTE NFDS = NUM-FDS + 1.
MOVE LOW-VALUES TO READMASK.
MOVE 6 TO TCPLENG.
CALL ’EZACIC06’ USING BITMASK-TOKEN CTOB READMASK

SOCKET-CONV TCPLENG RETCODE.
IF RETCODE = -1

THEN
MOVE BITMASK-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

ELSE
PERFORM ACCEPT-CLIENT-REQ THRU

ACCEPT-CLIENT-REQ-EXIT
UNTIL TASK-TERM

END-IF.
PERFORM CLOSE-SOCKET THRU CLOSE-SOCKET-EXIT.
MOVE TCP-SERVER-OFF TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

* *
* END OF PROGRAM *
* *

PGM-EXIT.

EXEC CICS
RETURN

320 z/OS V1R4.0 CS: IP CICS Sockets Guide

END-EXEC.
GOBACK.

* *
* TRUE IS NOT ENABLED *
* *

TCP-TRUE-REQ.

MOVE TCP-EXIT-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

* *
* DB2 CALL ATTACH FACILITY IS NOT ENABLED *
* *

DB2-TRUE-REQ.

MOVE DB2-CAF-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

* *
* LISTENER STARTED TASK *
* *

LISTENER-STARTED-TASK.

MOVE CLIENTID-PARM TO CID-LSTN-INFO.
MOVE -1 TO L-DESC.
CALL ’EZACICAL’ USING TCP-TOKEN TAKESOCKET-CMD

ZERO-HWRD CLIENTID-LSTN
GIVE-TAKE-SOCKET L-DESC
ERRNO RETCODE.

IF RETCODE < 0
THEN

MOVE ERRNO TO TAKE-ERRNO
MOVE TAKE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE BUFFER-LENG TO TCPLENG
MOVE START-MSG TO TCP-BUF
MOVE RETCODE TO SRV-SOCKID
CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG
CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD

SRV-SOCKID TCPLENG
ZERO-FWRD ZERO-PARM
TCP-BUF ERRNO
RETCODE

IF RETCODE < 0
THEN

MOVE ERRNO TO WRITE-ERRNO
MOVE WRITE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

ELSE
CALL ’EZACICAL’ USING TCP-TOKEN CLOSE-CMD

SRV-SOCKID ZERO-8
ERRNO RETCODE

IF RETCODE < 0
THEN

MOVE ERRNO TO CLOSE-ERRNO
MOVE CLOSE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

ELSE NEXT SENTENCE

Appendix E. Sample programs 321

END-IF
END-IF

END-IF.
MOVE LOW-VALUES TO TCP-BUF.

LISTENER-STARTED-TASK-EXIT.
EXIT.

* *
* START SERVER PROGRAM *
* *

INIT-SOCKET.

MOVE EIBTASKN TO SUBTASKNO.
CALL ’EZACICAL’ USING TCP-TOKEN INITAPI-CMD INIT-API2

INIT-API3 INIT-API4 INIT-SUBTASKID
INIT-API6 ERRNO RETCODE.

* CONTRACE. *
* NOTE: The CONTRACE parameter places trace output for this *
* SERVER in your system log for debugging purposes. *
* The parameter should be removed from the INITAPI-CMD *
* Once you are comfortable that your server is working. *
* *

IF RETCODE < 0
THEN

MOVE ERRNO TO INIT-ERRNO
MOVE INITAPI-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

ELSE
MOVE INIT-MSG TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

END-IF.
INIT-SOCKET-EXIT.

EXIT.
--
* *
* PERFORM TCP SOCKET FUNCTIONS BY PASSING SOCKET COMMAND TO *
* EZACICAL ROUTINE. SOCKET COMMAND ARE TRANSLATED TO PRE- *
* DEFINE INTEGER. *
* *
--
SCKET-BIND-LSTN.

MOVE -1 TO SRV-SOCKID-FWD.
--
* *
* CREATING A SOCKET (SOCKET CALL, INTEGER 17) TO ALLOCATE *
* AN OPEN SOCKET FOR INCOMING CONNECTIONS *
* *
--

CALL ’EZACICAL’ USING TCP-TOKEN SOCKET-CMD ZERO-HWRD
AF-INET SOCK-TYPE PROTOCOL
SRV-SOCKID-FWD ERRNO RETCODE.

IF RETCODE < 0
THEN

MOVE ERRNO TO SOCKET-ERRNO
MOVE SOCKET-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT

ELSE MOVE RETCODE TO SRV-SOCKID
MOVE ’1’ TO SOCK-CHAR(RETCODE + 1)

END-IF.
--
* *
* BIND THE SOCKET (BIND CALL, INTEGER 02) TO THE SERVICE PORT *
* TO ESTABLISH A LOCAL ADDRESS FOR PROCESSING INCOMING *

322 z/OS V1R4.0 CS: IP CICS Sockets Guide

* CONNECTIONS. *
* *
--

MOVE AF-INET TO SIN-FAMILY.
MOVE 0 TO SIN-ADDR.
MOVE PORT TO SIN-PORT.
CALL ’EZACICAL’ USING TCP-TOKEN BIND-CMD SRV-SOCKID

SOCKADDR-IN ERRNO RETCODE.
IF RETCODE < 0 THEN

MOVE ERRNO TO BIND-ERRNO
MOVE BIND-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT.

--
* *
* CALL ’LISTEN’ COMMAND (INTEGER 09) TO ALLOWS SERVERS TO *
* PREPARE A SOCKET FOR INCOMING CONNECTIONS AND SET MAXIMUM *
* CONNECTIONS. *
* *
--

CALL ’EZACICAL’ USING TCP-TOKEN LISTEN-CMD SRV-SOCKID
ZERO-FWRD BACKLOG ERRNO
RETCODE.

IF RETCODE < 0 THEN
MOVE ERRNO TO LISTEN-ERRNO
MOVE LISTEN-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT.

SCKET-BIND-LSTN-EXIT.
EXIT.

--
* *
* SOCKET HAS BEEN SET UP, THEN CALL ’ACCEPT’ (INTEGER 1) TO *
* ACCEPT A REQUEST WHEN A CONNECTION ARRIVES. *
* *
* THIS SAMPLE PROGRAM WILL ONLY USE 5 SOCKETS. *
* *
--
ACCEPT-CLIENT-REQ.

CALL ’EZACICAL’ USING TCP-TOKEN SELECT-CMD
LOM NFDS
NONZERO-FWRD NONZERO-FWRD
ZERO-FWRD ZERO-FWRD
TIMEVAL READMASK
DUMYMASK DUMYMASK
ZERO-8 REPLY-RDMASK
DUMYMASK DUMYMASK
ERRNO RETCODE.

IF RETCODE < 0
THEN

MOVE ERRNO TO SELECT-ERRNO
MOVE SELECT-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT.

IF RETCODE = 0
THEN GO TO ACCEPT-CLIENT-REQ-EXIT.

--
* *
* ACCEPT REQUEST *
* *
--

MOVE -1 TO CLI-SOCKID-FWD.
CALL ’EZACICAL’ USING TCP-TOKEN ACCEPT-CMD

SRV-SOCKID ZERO-FWRD
CLI-SOCKID-FWD SOCKADDR-IN
ERRNO RETCODE.

IF RETCODE < 0 THEN

Appendix E. Sample programs 323

MOVE ERRNO TO ACCEPT-ERRNO
MOVE ACCEPT-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT
GO TO PGM-EXIT.

MOVE RETCODE TO CLI-SOCKID.
PERFORM ACCEPT-RECV THRU ACCEPT-RECV-EXIT

UNTIL TASK-END OR TASK-TERM.
MOVE DB2END TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
CALL ’EZACICAL’ USING TCP-TOKEN CLOSE-CMD CLI-SOCKID

ZERO-8 ERRNO RETCODE.
IF RETCODE < 0 THEN

MOVE ERRNO TO CLOSE-ERRNO
MOVE CLOSE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

IF NOT TASK-TERM
MOVE ’0’ TO TASK-FLAG.

ACCEPT-CLIENT-REQ-EXIT.
EXIT.

--
* *
* RECEIVING DATA THROUGH A SOCKET BY ISSUING ’RECVFROM’ *
* COMMAND. *
* *
--
ACCEPT-RECV.

MOVE ’T’ TO TCP-INDICATOR.
MOVE BUFFER-LENG TO TCPLENG.
MOVE LOW-VALUES TO TCP-BUF.
CALL ’EZACICAL’ USING TCP-TOKEN RECVFROM-CMD CLI-SOCKID

ZERO-FWRD TCP-FLAG TCPLENG
SOCKADDR-IN TCP-BUF ERRNO
RETCODE.

IF RETCODE EQUAL 0 AND TCPLENG EQUAL 0
THEN NEXT SENTENCE
ELSE

IF RETCODE < 0
THEN

MOVE ERRNO TO RECVFROM-ERRNO
MOVE RECVFROM-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
MOVE ’1’ TO TASK-FLAG

ELSE
CALL ’EZACIC05’ USING TOEBCDIC-TOKEN

TCP-BUF
TCPLENG

IF TCP-BUF-H = LOW-VALUES OR SPACES
THEN

MOVE NULL-DATA TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
ELSE

IF TCP-BUF-H = ’END’
THEN MOVE ’1’ TO TASK-FLAG
ELSE IF TCP-BUF-H = ’TRM’

THEN MOVE ’2’ TO TASK-FLAG
ELSE PERFORM TALK-CLIENT THRU

TALK-CLIENT-EXIT
END-IF

END-IF
END-IF

END-IF
END-IF.

ACCEPT-RECV-EXIT.
EXIT.

**

324 z/OS V1R4.0 CS: IP CICS Sockets Guide

** PROCESSES TALKING TO CLIENT THAT WILL UPDATE DB2 **
** TABLES. **
**
** DATA PROCESS: **
** **
** INSERT REC - INS,X81,TEST DEPT,A0213B,Y94 **
** UPDATE REC - UPD,X81,,A1234C, **
** DELETE REC - DEL,X81,,, **
** END CLIENT - END,{end client connection } **
** END SERVER - TRM,{terminate server } **
** **
**
TALK-CLIENT.

UNSTRING TCP-BUF DELIMITED BY DEL-ID OR ALL ’*’
INTO IN-ACT

IN-DEPTNO
IN-DEPTN
IN-MGRNO
IN-ADMRDEPT.

IF IN-ACT EQUAL ’END’
THEN

MOVE ’1’ TO TASK-FLAG
ELSE

IF IN-ACT EQUAL ’U’ OR EQUAL ’UPD’
THEN

EXEC SQL UPDATE TCPCICS.DEPT
SET MGRNO = :IN-MGRNO
WHERE DEPTNO = :IN-DEPTNO

END-EXEC
MOVE ’UPDATE’ TO DB2-ACT
MOVE ’UPDATED: ’ TO DB2M-VAR

ELSE
IF IN-ACT EQUAL ’I’ OR EQUAL ’INS’

THEN
EXEC SQL INSERT

INTO TCPCICS.DEPT (DEPTNO, DEPTNAME,
MGRNO, ADMRDEPT)

VALUES (:IN-DEPTNO, :IN-DEPTN,
:IN-MGRNO, :IN-ADMRDEPT)

END-EXEC
MOVE ’INSERT’ TO DB2-ACT
MOVE ’INSERTED: ’ TO DB2M-VAR

ELSE
IF IN-ACT EQUAL ’D’ OR EQUAL ’DEL’

THEN
EXEC SQL DELETE

FROM TCPCICS.DEPT
WHERE DEPTNO = :IN-DEPTNO

END-EXEC
MOVE ’DELETE’ TO DB2-ACT
MOVE ’DELETED: ’ TO DB2M-VAR

ELSE
MOVE KEYWORD-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
END-IF

END-IF
END-IF

END-IF.
IF DADELETE OR DAINSERT OR DAUPDATE

THEN
MOVE SQLERRD(3) TO DB2CODE
MOVE DB2MSG TO MSG-AREA
MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG
EXEC CICS SYNCPOINT END-EXEC
EXEC CICS WRITEQ TD

QUEUE (’CSMT’)

Appendix E. Sample programs 325

FROM (TCPCICS-MSG-AREA)
LENGTH (LENG)
NOHANDLE

END-EXEC
**
** WRITE THE DB2 MESSAGE TO CLIENT. **
**

MOVE TCPCICS-MSG-2 TO TCP-BUF
CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG
CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD CLI-SOCKID

TCPLENG ZERO-FWRD ZERO-PARM
TCP-BUF ERRNO RETCODE

MOVE LOW-VALUES TO TCP-BUF
TCP-INDICATOR
DB2-ACT

IF RETCODE < 0
THEN

MOVE ERRNO TO WRITE-ERRNO
MOVE WRITE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU

HANDLE-TCPCICS-EXIT
MOVE ’1’ TO TASK-FLAG

END-IF
END-IF.

TALK-CLIENT-EXIT.
EXIT.

* *
* CLOSE ORIGINAL SOCKET DESCRIPTOR *
* *

CLOSE-SOCKET.

CALL ’EZACICAL’ USING TCP-TOKEN CLOSE-CMD SRV-SOCKID
ZERO-8 ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ERRNO TO CLOSE-ERRNO
MOVE CLOSE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

CLOSE-SOCKET-EXIT.
EXIT.

* *
* SEND TCP/IP ERROR MESSAGE *
* *

HANDLE-TCPCICS.

MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG.
EXEC CICS ASKTIME

ABSTIME (TSTAMP)
NOHANDLE

END-EXEC.
EXEC CICS FORMATTIME

ABSTIME (TSTAMP)
MMDDYY (MSGDATE)
TIME (MSGTIME)
DATESEP (’/’)
TIMESEP (’:’)
NOHANDLE

END-EXEC.
EXEC CICS WRITEQ TD

QUEUE (’CSMT’)
FROM (TCPCICS-MSG-AREA)
RESP (RESPONSE)
LENGTH (LENG)

END-EXEC.
IF RESPONSE = DFHRESP(NORMAL)

THEN NEXT SENTENCE

326 z/OS V1R4.0 CS: IP CICS Sockets Guide

ELSE
IF RESPONSE = DFHRESP(INVREQ)

THEN MOVE TS-INVREQ-ERR TO MSG-AREA
ELSE

IF RESPONSE = DFHRESP(NOTAUTH)
THEN MOVE TS-NOTAUTH-ERR TO MSG-AREA
ELSE

IF RESPONSE = DFHRESP(IOERR)
THEN MOVE TS-IOERR-ERR TO MSG-AREA
ELSE MOVE WRITETS-ERR TO MSG-AREA

END-IF
END-IF

END-IF
END-IF.
IF TCP-INDICATOR = ’T’ THEN

MOVE BUFFER-LENG TO TCPLENG
MOVE LOW-VALUES TO TCP-BUF
MOVE TCPCICS-MSG-2 TO TCP-BUF
CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG
MOVE ’ ’ TO TCP-INDICATOR
CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD CLI-SOCKID

TCPLENG ZERO-FWRD ZERO-PARM
TCP-BUF ERRNO RETCODE

IF RETCODE < 0
THEN

MOVE ERRNO TO WRITE-ERRNO
MOVE WRITE-ERR TO MSG-AREA
EXEC CICS WRITEQ TD

QUEUE (’CSMT’)
FROM (TCPCICS-MSG-AREA)
LENGTH (LENG)
NOHANDLE

END-EXEC
IF TASK-TERM OR TASK-END

THEN NEXT SENTENCE
ELSE MOVE ’1’ TO TASK-FLAG

END-IF
END-IF.

MOVE SPACES TO MSG-AREA.
HANDLE-TCPCICS-EXIT.

EXIT.

* *
* SEND DB2 ERROR MESSAGE *
* *

SQL-ERROR-ROU.

MOVE SQLCODE TO SQL-ERR-CODE.
MOVE SPACES TO MSG-AREA.
MOVE SQL-ERROR TO MSG-AREA.
EXEC CICS WRITEQ TD

QUEUE (’CSMT’)
FROM (TCPCICS-MSG-AREA)
RESP (RESPONSE)
LENGTH (LENG)

END-EXEC.
MOVE LOW-VALUES TO TCP-BUF.
MOVE TCPCICS-MSG-2 TO TCP-BUF.
CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.
CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD CLI-SOCKID

TCPLENG ZERO-FWRD ZERO-PARM
TCP-BUF ERRNO RETCODE.

IF RETCODE < 0 THEN
MOVE ERRNO TO WRITE-ERRNO
MOVE WRITE-ERR TO MSG-AREA
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

GO TO PGM-EXIT.

Appendix E. Sample programs 327

SQL-ERROR-ROU-EXIT.
EXIT.

* *
* OTHER ERRORS (HANDLE CONDITION) *
* *

INVREQ-ERR-SEC.

MOVE TCP-EXIT-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

IOERR-SEC.
MOVE IOERR-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

LENGERR-SEC.
MOVE LENGERR-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

NOSPACE-ERR-SEC.
MOVE NOSPACE-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

QIDERR-SEC.
MOVE QIDERR-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

ITEMERR-SEC.
MOVE ITEMERR-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

ENDDATA-SEC.
MOVE ENDDATA-ERR TO MSG-AREA.
PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.
GO TO PGM-EXIT.

328 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix F. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New protocols
are being designed and implemented by researchers and are brought to the
attention of the Internet community in the form of RFCs. Some of these protocols
are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

855 Telnet Option Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

858 Telnet Suppress Go Ahead Option J.B. Postel, J.K. Reynolds

859 Telnet Status Option J.B. Postel, J.K. Reynolds

860 Telnet Timing Mark Option J.B. Postel, J.K. Reynolds

861 Telnet Extended Options—List Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

896 Congestion Control in IP/TCP Internetworks J. Nagle

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

© Copyright IBM Corp. 1994, 2002 329

||

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1006 ISO Transport Service on top of the TCP Version 3 M.T.Rose, D.E. Cass

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1011 Official Internet Protocols J. Reynolds, J. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell,
J.S. Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks
J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun
Microsystems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1060 Assigned Numbers J. Reynolds, J. Postel

1073 Telnet Window Size Option D. Waitzman

1079 Telnet Terminal Speed Option C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1096 Telnet X Display Location Option G. Marcy

1101 DNS encoding of network names and other types P.V. Mockapetris

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

330 z/OS V1R4.0 CS: IP CICS Sockets Guide

||

||

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-Based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP) J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1158 Management Information Base for Network Management of TCP/IP-based
internets: MIB-II M.T. Rose

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1184 Telnet Linemode Option D. Borman

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

1191 Path MTU Discovery J. Mogul, S. Deering

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked “Experienced
Internet User” Questions G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 Address Mapping for DDN L. Morales, P. Hasse

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions G.S. Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

Appendix F. Related protocol specifications (RFCs) 331

||
|

||

||

1348 DNS NSAP RRs B. Manning

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis,
D. Robinson, R. Ullmann

1363 A Proposed Flow Specification C. Partridge

1372 Telnet Remote Flow Control Option D. Borman, C. L. Hedrick

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2—Carrying Additional Information G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

1416 Telnet Authentication Option D. Borman, ed.

1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1535 A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S.Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 IAB Official Protocol Standards J.B. Postel

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

332 z/OS V1R4.0 CS: IP CICS Sockets Guide

||

||

||

||

1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions A.N. Marine, J. Reynolds, G.S. Malkin

1695 Definitions of Managed Objects for ATM Management Version 8.0 Using
SMIv2 M. Ahmed, K. Tesink

1706 DNS NSAP Resource Records B. Manning, R. Colella

1713 Tools for DNS debugging A. Romao

1723 RIP Version 2—Carrying Additional Information G. Malkin

1766 Tags for the Identification of Languages H. Alvestrand

1794 DNS Support for Load Balancing T. Brisco

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1876 A Means for Expressing Location Information in the Domain Name System
C. Davis, P. Vixie, T. Goodwin, I. Dickinson

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1901 Introduction to Community-Based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

1902 Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocols Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-Standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1982 Serial Number Arithmetic R. Elz, R. Bush

1995 Incremental Zone Transfer in DNS M. Ohta

Appendix F. Related protocol specifications (RFCs) 333

||

||

||
|

||
|

||

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P.
Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol Using
SMIv2 K. McCloghrie

2012 SNMPv2 Management Information Base for the Transmission Control
Protocol Using SMIv2 K. McCloghrie

2013 SNMPv2 Management Information Base for the User Datagram Protocol
Using SMIv2 K. McCloghrie

2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

2065 Domain Name System Security Extensions D. Eastlake, C. Kaufman

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2137 Secure Domain Name System Dynamic Update D. Eastlake

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System
R. Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP) Version 1 R. Braden, L. Zhang, S.
Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB Using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

334 z/OS V1R4.0 CS: IP CICS Sockets Guide

||

||

||
|

||

||
|

||

||

||

||

||
|

||
|

||

||

||

||

2320 Definitions of Managed Objects for Classical IP and ARP over ATM Using
SMIv2 M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell,
S. Deering

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon,
R. Elz

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers K. Nichols, S. Blake, F. Baker, D. Black

2535 Domain Name System Security Extensions D. Eastlake

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake

2553 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2571 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

2572 Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick,
J. Johnson

2672 Non-Terminal DNS Name Redirection M. Crawford

2758 Definitions of Managed Objects for Service Level Agreements Performance
Monitoring K. White

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake, B. Wellington

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

Appendix F. Related protocol specifications (RFCs) 335

||

||

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||

||

||

||

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o, ed.

3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at the following Web address: http://www.rfc-editor.org/rfc.html

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

336 z/OS V1R4.0 CS: IP CICS Sockets Guide

||

||
|

http://www.rfc-editor.org/rfc.html

Appendix G. Information APARs

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed
below. Documents updated for V1R4 are complete except for the updates
contained in the information APARs that may be issued after V1R4 documents
went to press.

2. Information APARs are predefined for z/OS V1R4 Communications Server and
may not contain updates.

3. Information APARs for OS/390 documents are in the document called OS/390
DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

4. Information APARs for z/OS documents are in the document called z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP manuals
Table 19 lists information APARs for IP documents.

Table 19. IP information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP API Guide ii13255 ii12861 ii12371 ii11635

IP CICS Sockets Guide ii13257 ii12862 ii11626

IP Configuration ii11620
ii12068
ii12353
ii12649
ii13018

IP Configuration Guide ii13244 ii12498
ii13087

ii12362
ii12493
ii13006

IP Configuration Reference ii13245 ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii13249 ii12503 ii12366
ii12495

ii11628

IP Messages Volume 1 ii13250 ii12857
ii13229

ii12367 ii11630
13230

IP Messages Volume 2 ii13251 ii12858 ii12368 ii11631

IP Messages Volume 3 ii13252 ii12859 ii12369
12990

ii11632
ii12883

IP Messages Volume 4 ii13253 ii12860

IP Migration ii13242 ii12497 ii12361 ii11618

© Copyright IBM Corp. 1994, 2002 337

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Table 19. IP information APARs (continued)

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP Network and Application Design
Guide

ii13243

IP Network Print Facility ii12864 ii11627

IP Programmer’s Reference ii13256 ii12505 ii11634

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

IP User’s Guide ii12365
ii13060

ii11625

IP User’s Guide and Commands ii13247 ii12501 ii12365
ii13060

ii11625

IP System Admin Guide ii13248 ii12502

Quick Reference ii13246 ii12500 ii12364

Information APARs for SNA manuals
Table 20 lists information APARs for SNA documents.

Table 20. SNA information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and z/OS CS

V1R1

CS for OS/390
2.8

Anynet SNA over TCP/IP ii11922

Anynet Sockets over SNA ii11921

CSM Guide

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

SNA Customization ii13240 ii12872 ii12388 ii11923

SNA Diagnosis ii13236 ii12490
ii13034`

ii12389 ii11915

SNA Messages ii13238 ii12491 ii12382
ii12383

ii11916

SNA Network Implementation Guide ii13234 ii12487 ii12381 ii11911

SNA Operation ii13237 ii12489 ii12384 ii11914

SNA Migration ii13233 ii12486 ii12386 ii11910

SNA Programming ii13241 ii13033 ii12385 ii11920

Quick Reference ii13246 ii12500 ii12364 ii11913

SNA Resource Definition Reference ii13235 ii12488 ii12380
ii12567

ii11912
ii12568

SNA Resource Definition Samples

SNA Data Areas ii13239 ii12492 ii12387 ii11617

Other information APARs
Table 21 on page 339 lists information APARs not related to documents.

338 z/OS V1R4.0 CS: IP CICS Sockets Guide

Table 21. Non-document information APARs

Content Number

OMPROUTE ii12026

iQDIO ii11220

index of recomended maintenace for VTAM ii11220

CSM for VTAM ii12657

CSM for TCP/IP ii12658

AHHC, MPC, and CTC ii01501

DLUR/DLUS for z/OS V1R2 ii12986

Enterprise Extender ii12223

Generic resources ii10986

HPR ii10953

MNPS ii10370

Performance ii11710
ii11711
ii11712

Appendix G. Information APARs 339

340 z/OS V1R4.0 CS: IP CICS Sockets Guide

Appendix H. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1994, 2002 341

342 z/OS V1R4.0 CS: IP CICS Sockets Guide

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1994, 2002 343

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

344 z/OS V1R4.0 CS: IP CICS Sockets Guide

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Notices 345

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
eServer
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

346 z/OS V1R4.0 CS: IP CICS Sockets Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
z/OS.e
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/sites/corporate/tradmarx.htm .

Other company, product, and service names may be trademarks or service marks
of others.

Notices 347

http://www.intel.com/sites/corporate/tradmarx.htm

348 z/OS V1R4.0 CS: IP CICS Sockets Guide

Index

Special Characters
hlq.PROFILE.TCPIP data set 42
hlq.TCPIP.DATA data set 43

A
abend codes

AEY9 86
E20L 87
E20T 87

ACCEPT (call) 146
accept system call

C language 115
EZACICAL call 236
use in server 97

accessibility features 341
adapter 17
address

family (domain) 99
MVS address spaces 100
structures 100

AF parameter on call interface, on SOCKET 217
AF_INET domain parameter 99, 140
ALTER 54
ASCII data format 109
automatic startup 81

B
BACKLOG parameter on call interface, LISTEN

call 182
big endian 101
BIND (call) 148
bind system call

C language 117
EZACICAL call 237
use in server 97

bit-mask on call interface, on EZACIC06 call 227
bit-mask-length on call interface, on EZACIC06

call 228
blocking/nonblocking option 120, 130
broadcast option 126
BUF parameter on call socket interface 143

on READ 183
on RECV 187
on RECVFROM 189
on SEND 201
on SENDTO 206
on WRITE 221

C
C language

API 111, 125
basic calls 17
C structures

clientid 114

C language (continued)
C structures (continued)

ifconf 114
ifreq 114
linger 114
sockaddr_in 115
timeval 115

calls
accept() 115
bind() 117
close() 118
connect() 118
fcntl() 120
geetpeername() 123
getclientid() 121
gethostbyaddr() 121
gethostbyname() 122
gethostid() 122
gethostname() 123
getsockname() 124
getsockopt() 125
givesocket() 128
initapi() 129
ioctl() 129
listen() 131
read() 132
recv() 133
recvfrom() 134
select() 135
send() 137
sendto() 138
setsockopt() 125
shutdown() 139
socket() 140
takesocket() 141
write() 142

compiling and linking 111
header files needed 111

cache file, VSAM 73
Call Instructions for Assembler, PL/1, and COBOL

Programs
ACCEPT 146
BIND 148
CLOSE 150
CONNECT 151
EZACIC04 225
EZACIC05 226
EZACIC06 227
EZACIC08 229
FCNTL 154
GETCLIENTID 155
GETHOSTBYADDR 157
GETHOSTBYNAME 159
GETHOSTID 161
GETHOSTNAME 161
GETPEERNAME 163
GETSOCKNAME 164
GETSOCKOPT 165

© Copyright IBM Corp. 1994, 2002 349

Call Instructions for Assembler, PL/1, and COBOL
Programs (continued)

GIVESOCKET 172
INITAPI 175
introduction 143
IOCTL 177
LISTEN 181
READ 182
READV 183
RECV 185
RECVFROM 187
RECVMSG 189
SELECT 193
SELECTEX 197
SENDMSG 202
SENDTO 205
SETSOCKOPT 207
SHUTDOWN 214
SOCKET 216
TAKESOCKET 218
TERMAPI 220
WRITE 220
WRITEV 222

CH-MASK parameter on call interface, on
EZACIC06 227

child server 8, 96
CICS 81

starting automatically 81
starting manually 81
starting with program link 87

CICS transaction processing system
defining resources in setup 20
operation with CICS TCP/IP 17

client
definition 2
socket calls used in 95

CLIENT parameter on call socket interface 143
on GETCLIENTID 156
on GIVESOCKET 174
on TAKESOCKET 219

client/server processing 2
clientid C structure 114
close system call

C language 118
EZACICAL call 238
use in child server 96
use in client 96
use in server 97

COBOL language
basic calls 17
call format 236
choosing EZACICAL or Sockets Extended API 233
compilation JCL 233
EZACICAL API 235, 260
socket API calls (EZACICAL, SOKETS)

ACCEPT 236
BIND 237
CLOSE 238
CONNECT 239
FCNTL 240
GETCLIENTID 241

COBOL language (continued)
socket API calls (EZACICAL, SOKETS) (continued)

GETHOSTID 242
GETHOSTNAME 242
GETPEERNAME 243
GETSOCKNAME 244
GETSOCKOPT 245
GIVESOCKET 246
INITAPI 247
IOCTL 248
LISTEN 249
READ 249
RECVFROM 250
SELECT 251
SEND 253
SENDTO 254
SETSOCKOPT 255
SHUTDOWN 257
SOCKET 257
TAKESOCKET 258
WRITE 259

COMMAND parameter on call interface, IOCTL
call 178

COMMAND parameter on call socket interface 143
on EZACIC06 228
on FCNTL 155

Communications Server for z/OS, online information xv
COMP (COBOL USAGE) 236
concurrent server 93

defined 7
illustrated 7, 8
writing your own 96

configuration file, JCL 51
configuration macro 44
configuration transaction 53
configuring CICS TCP/IP 19, 44
connect system call

C language 118
EZACICAL call 239
use in client 96

conversion routines 109
CONVERT 54, 58
COPY 59
CSKL transaction 103
CSKL transaction, defining in CICS 23

D
data conversion 109
data sets, modifying 53
data translation, socket interface 143, 224

ASCII to EBCDIC 226
bit-mask to character 227
character to bit-mask 227
EBCDIC to ASCII 225

DEFINE 61
DELETE 64
Destination Control Table 36
DFHSRT macroinstruction types 40
disability, physical 341
DISPLAY 66

350 z/OS V1R4.0 CS: IP CICS Sockets Guide

DNS
EZACIC25, adding to RDO 24

DNS, online information xvi
domain

address family 99
parameter in socket call 140

Domain Name System cache 73
cache file 73
EZACICR macro 73
initialization module, creating 75

E
EBCDIC data format 109
enhanced Listener

converting to 54, 58
parameters 46
temporary storage 20

environmental support 89
ERETMSK parameter on call interface, on

SELECT 197
ERRNO parameter on call socket interface 143

on ACCEPT 148
on BIND 150
on CLOSE 151
on CONNECT 153
on FCNTL 155
on GETCLIENTID 156
on GETHOSTNMAE 162
on GETPEERNAME 164
on GETSOCKNAME 165
on GETSOCKOPT 167
on GIVESOCKET 175
on INITAPI 177
on IOCTL 180
on LISTEN 182
on READ 183
on READV 185
on RECV 187
on RECVFROM 189
on RECVMSG 193
on SELECT 197
on SELECTEX 199
on SEND 201
on SENDMSG 205
on SENDTO 207
on SETSOCKOPT 208
on SHUTDOWN 216
on SOCKET 218
on TAKESOCKET 219
on WRITE 222
on WRITEV 224

errno variable 115
error check option 127
ESDNMASK parameter on call interface, on

SELECT 196
event monitoring

for Listener 38
for TRUE 37

EWOULDBLOCK error return, call interface calls
RECV 185

EWOULDBLOCK error return, call interface calls
(continued)

RECVFROM 188
EXEC CICS LINK 87
EXEC CICS RETRIEVE 102
EXEC CICS START 102
EZAC (configuration transaction) 53
EZAC start screen 83
EZACACHE, defining to RDO 34
EZACIC04, call interface, EBCDIC to ASCII

translation 225
EZACIC05, call interface, ASCII to EBCDIC

translation 226
EZACIC06 15
EZACIC06, call interface, bit-mask translation 227
EZACIC08, HOSTENT structure interpreter utility 229
EZACICAL 233
EZACICAL API 235, 260
EZACICAL program 235
EZACICD (configuration macro) 44
EZACICR macro 73, 75
EZACICSE program 107
EZACICxx programs

defining in CICS 23
EZACIC00 25
EZACIC01 25
EZACIC02 26
EZACIC03 31
EZACIC07 31
EZACIC12 27
EZACIC20 26

PLT entries 40
EZACIC21 27
EZACIC22 28
EZACIC23 28
EZACIC24 29
EZACIC25

defining in RDO 29
Domain Name System cache 74

EZACICAL 31
EZACICM 30
EZACICME 30
EZACICSC 31
EZACICSS 31
summary 23

EZACONFG, defining to RDO 32
EZAO transaction

defining in CICS 22
manual startup/shutdown 81

EZAP transaction
defining in CICS 22

F
FCNTL (call) 154
fcntl system call

C language 120
EZACICAL call 240

files, defining to RDO 32
EZACACHE 34
EZACONFG 32

Index 351

FLAGS parameter on call socket interface 143
on RECV 186
on RECVFROM 189
on RECVMSG 192
on SEND 201
on SENDMSG 204
on SENDTO 206

FNDELAY flag on call interface, on FCNTL 155
Functions

ALTER 54
CONVERT 58
COPY 59
DEFINE 61
DELETE 64

G
GETCLIENTID (call) 155
getclientid system call

C language 121
EZACICAL call 241
use in server 97, 102

GETHOSTBYADDR (call) 157
GETHOSTBYNAME (call) 159
GETHOSTID (call) 161
gethostid system call

C language 122
EZACICAL call 242

GETHOSTNAME (call) 161
gethostname system call

C language 121, 122, 123
EZACICAL call 242

GETPEERNAME (call) 163
getpeername system call

C language 123
EZACICAL call 243

GETSOCKNAME (call) 164
getsockname system call

C language 124
EZACICAL call 244

GETSOCKOPT (call) 165
getsockopt system call

C language 125
EZACICAL call 245

GIVESOCKET (call) 172
givesocket system call

C language 128
EZACICAL call 246
use in server 97, 102

H
HOSTADDR parameter on call interface, on

GETHOSTBYADDR 157
HOSTENT parameter on socket call interface

on GETHOSTBYADDR 157
on GETHOSTBYNAME 160

HOSTENT structure interpreter parameters, on
EZACIC08 230

HOW parameter on call interface, on
SHUTDOWN 216

I
IBM Software Support Center, contacting xvii
IDENT parameter on call interface, INITAPI call 176
ifconf C structure 114
ifreq C structure 114
immediate=no 86
immediate=yes 86
IN-BUFFER parameter on call interface, EZACIC05

call 226
information APARs for IP-related documents 337
information APARs for non- document information 338
information APARs for SNA-related documents 338
initapi system call

C language 129
EZACICAL call 247
use in client 95
use in server 96

INITAPI(call) 175
INITAPIX 175
installing CICS TCP/IP 19
Internet, finding z/OS information online xv
internets, TCP/IP 2
interval control 104
IOCTL (call) 177
ioctl system call

C language 129
EZACICAL call 248

IOV parameter on call socket interface 143
on READV 184
on WRITEV 223

IOVCNT parameter on call socket interface 143
on READV 185
on RECVMSG 192
on SENDMSG 204
on WRITEV 223

IP protocol 3
iterative server

defined 7
illustrated 8, 94
socket calls in 98

J
JCL jobs

for C compilation 111
for CICS startup 19
for CICS/TCP configuration 51
for COBOL compilation 233
for DNS cache file 77

K
keyboard 341

L
LENGTH parameter on call socket interface 143

on EZACIC04 225
on EZACIC05 226

license information, online xvi

352 z/OS V1R4.0 CS: IP CICS Sockets Guide

license, patent, and copyright information 343
linger C structure 114
linger on close option 127
link, program 87
LISTEN (call) 181
listen system call

C language 131
EZACICAL call 249
use in server 97

Listener
enhanced

converting to 54, 58
parameters 46
temporary storage 20

input format 104
monitor control table 38
output format 105
security/transaction module 107
standard

converting to enhanced Listener 54, 58
parameters 46

starting and stopping 103, 109
user-written 89

listener/server call sequence 96
listener/server, socket call (general) 96
little endian 101
LookAt

accessing from a PalmPilot xvii
as a TSO command xvii
defined xvii
on the Internet xvii

M
macro, EZACICR 73
manifest.h C header 111
manual startup 81
MAXFILEPROC 48, 71
MAXSNO parameter on call interface, INITAPI call 177
MAXSOC parameter on call socket interface 143

on INITAPI 176
on SELECT 196
on SELECTEX 198

modifying data sets 53
Monitor Control Table

for Listener 39
for TRUE 37

monitoring, event
for Listener 38
for TRUE 37

MSG parameter on call socket interface 143
on RECVMSG 192
on SENDMSG 204

MVS address spaces 100

N
NAME parameter on socket call interface

on ACCEPT 148
on BIND 149
on CONNECT 153

NAME parameter on socket call interface (continued)
on GETHOSTBYNAME 160
on GETHOSTNAME 162
on GETPEERNAME 164
on GETSOCKNAME 165
on RECVFROM 189
on SENDTO 206

NAMELEN parameter on socket call interface
on GETHOSTBYNAME 159
on GETHOSTNAME 162

NBYTE parameter on call socket interface 143
on READ 183
on RECV 187
on RECVFROM 189
on SEND 201
on SENDTO 206
on WRITE 221

network byte order 101

O
OPTNAME parameter on call socket interface 143
OPTVAL parameter on call socket interface 143
original COBOL application programming interface

(API) 233, 260
OSI 2
OUT-BUFFER parameter on call interface, on

EZACIC04 225
out-of-band data

options in get/setsockopt call 127
sending with send call 138

P
passing sockets 97
pending activity 14
pending exception 15
pending read 15
PL/1 programs, required statement 145
PLT 81
PLT entry 40
port numbers

definition 100
reserving port numbers 42

ports
compared with sockets 5
numbers 100
reserving port numbers 42

program link 87
Program List Table 81
program variable definitions, call interface 143

assembler definition 146
COBOL PIC 146
PL/1 declare 146
VS COBOL II PIC 146

programs, defining in CICS 23
PROTO parameter on call interface, on SOCKET 217
protocol parameter in socket call 140

Index 353

R
RDO

configure the socket interface (EZAC) 21
READ (call) 182
read system call

C language 132
EZACICAL call 249
use in child server 96
use in client 96

READV (call) 183
RECV (call) 185
recv system call, C language 133
RECVFROM (call) 187
recvfrom system call

C language 134
EZACICAL call 250
use in server 97

RECVMSG (call) 189
RENAME 69
REQARG and RETARG parameter on call socket

interface 143
on FCNTL 155
on IOCTL 179

requirements for CICS TCP/IP 16
resource definition in CICS 20
RETARG parameter on call interface, on IOCTL 180
RETCODE parameter on call socket interface 143

on ACCEPT 148
on BIND 150
on CLOSE 151
on CONNECT 153
on EZACIC06 228
on FCNTL 155
on GETCLIENTID 156
on GETHOSTBYADDR 158
on GETHOSTBYNAME 160
on GETHOSTID 161
on GETHOSTNAME 162
on GETPEERNAME 164
on GETSOCKNAME 165
on GETSOCKOPT 167
on GIVESOCKET 175
on INITAPI 177
on IOCTL 180
on LISTEN 182
on READ 183
on READV 185
on RECV 187
on RECVFROM 189
on RECVMSG 193
on SELECT 197
on SELECTEX 199
on SEND 201
on SENDMSG 205
on SENDTO 207
on SETSOCKOPT 208
on SHUTDOWN 216
on SOCKET 218
on TAKESOCKET 219
on WRITE 222
on WRITEV 224

return codes
call interface 146

reuse local address option 127
RFC (request for comment)

list of 329
RFC (request for comments)

accessing online xv
RRETMSK parameter on call interface, on

SELECT 197
RSNDMSK parameter on call interface, on

SELECT 196

S
S, defines socket descriptor on socket call interface

on ACCEPT 148
on BIND 149
on CLOSE 151
on CONNECT 153
on FCNTL 154
on GETPEERNAME 163
on GETSOCKNAME 165
on GETSOCKOPT 166
on GIVESOCKET 174
on IOCTL 178
on LISTEN 181
on READ 183
on READV 184
on RECV 186
on RECVFROM 188
on RECVMSG 192
on SEND 201
on SENDMSG 204
on SENDTO 206
on SETSOCKOPT 208
on SHUTDOWN 216
on WRITE 221
on WRITEV 223

security/transaction module 107
SELECT (call) 193
select mask 14
select system call

C language 135
EZACICAL call 251
use in server 97

SELECTEX (call) 197
SEND (call) 200
send system call

C language 137
EZACICAL call 253

SENDMSG (call) 202
SENDTO (call) 205
sendto system call

C language 138
EZACICAL call 254

server
definition 2
socket calls in child server 96
socket calls in concurrent server 96
socket calls in iterative server 98

SETSOCKOPT (call) 207

354 z/OS V1R4.0 CS: IP CICS Sockets Guide

setsockopt system call
C language 125
EZACICAL call 255

SEZATCP data set 20
shortcut keys 341
SHUTDOWN (call) 214
shutdown system call

C language 139
EZACICAL call 257

shutdown, immediate 86
shutdown, manual 81
SNA protocols and CICS 1
SOCK_STREAM type parameter 140
sockaddr_in C structure

format 115
use in accept call 116
use in bind call 117
use in connect call 119

SOCKET (call) 216
socket call interface

on ACCEPT 148
on BIND 149
on CLOSE 151
on CONNECT 153
on FCNTL 154
on GETPEERNAME 163
on GETSOCKNAME 165
on GETSOCKOPT 166
on GIVESOCKET 174
on IOCTL 178
on LISTEN 181
on READ 183
on READV 184
on RECV 186
on RECVFROM 188
on RECVMSG 192
on SEND 201
on SENDMSG 204
on SENDTO 206
on SETSOCKOPT 208
on SHUTDOWN 216
on WRITE 221
on WRITEV 223

socket system call 140
EZACICAL call 257
use in client 95
use in server 96

sockets
compared with ports 5
introduction 3
passing 97

Sockets Extended API 4
SOCRECV parameter on call interface, TAKESOCKET

call 219
SOCTYPE parameter on call interface, on

SOCKET 217
SRT 40
standard Listener

converting to enhanced Listener 54, 58
parameters 46

startup
automatic 81
manually 81
program link 87

storage protection machines 21, 24
stub program 17
subtask 17
SUBTASK parameter on call interface, INITAPI

call 176
support, environmental 89
system recovery table 40

T
TAKESOCKET (call) 218
takesocket system call

C language 141
EZACICAL call 258
use in child server 96, 102

task control 104
task-related user exit 17
TCP protocol 3
TCP_NODELAY 125, 126
TCP/IP

online information xv
protocol specifications 329

TCP/IP protocols 2
TCP/IP services, modifying data sets 42
TCPIP, compared with SNA 1
TCPIP.DATA data set 43
tcpip.SEZACMAC data set 111
tcpip.SEZATCP data set 20
TCPIPJOBNAME user id 43
TCPM td queue 36
TERMAPI (call) 220
TIMEOUT parameter on call interface, on

SELECT 196
TIMEOUT parameter on call socket interface 143

on SELECTEX 198
timeval structure 115
TOKEN parameter on call interface, on EZACIC06 227
trademark information 346
transaction identifier 104
transactions, defining in CICS 21
transient data 36
TRUE module

description 17
monitor control table 37

type (of socket) option 127
type parameter 45

TYPE=CICS 45
TYPE=INITIAL 45
TYPE=LISTENER 46

type parameter in socket call 140

U
UDP protocol 3
UNIX System Services 48, 71
use of HOSTENT structure interpreter, EZACIC08 229

Index 355

user interface
ISPF 341
TSO/E 341

utility programs 143, 224
EZACIC04 225
EZACIC05 226
EZACIC06 227
EZACIC08 229

V
VSAM cache file 73
VTAM, online information xv

W
WRETMSK parameter on call interface, on

SELECT 197
WRITE (call) 220
write system call

C language 142
EZACICAL call 259
use in child server 96
use in client 96

WRITEV (call) 222
WSNDMSK parameter on call interface, on

SELECT 196

Z
z/OS, documentation library listing xviii
z/OS, listing of documentation available 337

356 z/OS V1R4.0 CS: IP CICS Sockets Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. However, the comments you
send should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by mail, use the RCF at the back of this
document.

v If you prefer to send comments by FAX, use this number: 1-800-254-0206

v If you prefer to send comments electronically, use this network ID:
usib2hpd@vnet.ibm.com

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1994, 2002 357

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|

|

358 z/OS V1R4.0 CS: IP CICS Sockets Guide

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IP CICS Sockets Guide
Version 1 Release 4

Publication No. SC31-8807-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8807-01

SC31-8807-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01 and 5655–G52

Printed in U.S.A.

SC31-8807-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

4.
0

C
S:

IP
C

IC
S

So
ck

et
s

G
ui

de
Ve

rs
io

n
1

R
el

ea
se

4

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Where to find related information on the Internet
	DNS web sites

	Licensed documents
	Using LookAt to look up message explanations
	How to contact IBM® service
	z/OS Communications Server information
	Softcopy information
	z/OS Communications Server library
	Redbooks
	Related information
	Determining if a publication is current

	Summary of changes
	Chapter 1. Introduction to CICS TCP/IP
	TCP/IP internets
	Telnet
	Client/server processing
	TCP, UDP, and IP
	The socket API
	Programming with sockets
	Socket types
	Addressing TCP/IP hosts

	A typical client server program flow chart
	Concurrent and iterative servers

	The basic socket calls
	Server TCP/IP calls
	SOCKET
	BIND
	LISTEN
	ACCEPT
	GIVESOCKET and TAKESOCKET
	READ and WRITE

	Client TCP/IP calls
	The SOCKET call
	The CONNECT call
	READ/WRITE calls — the conversation
	The CLOSE call

	Other socket calls
	The SELECT call
	IOCTL and FCNTL calls
	GIVESOCKET and TAKESOCKET calls

	What you must have to run CICS TCP/IP
	CICS TCP/IP components
	A summary of what CICS TCP/IP provides
	The socket calls
	The Listener
	Conversion routines

	Chapter 2. Setting up and configuring CICS TCP/IP
	MVS JCL — Modifying CICS startup
	CICS — Defining CICS TCP/IP resources
	Transaction definitions
	Using storage protection

	Program definitions
	Required programs, CICS definition needed
	Optional programs, CICS definition needed
	Required programs, CICS definition not needed

	File definitions
	EZACONFG
	EZACACHE

	Transient data definition
	CICS monitoring
	Event monitoring points for the TRUE
	Event monitoring points for the Listener

	CICS program list table (PLT)
	System recovery table
	DFHSRT macroinstruction types
	DFHSRT example

	TCP/IP services — Modifying data sets
	The hlq.PROFILE.TCPIP data set
	The hlq.TCPIP.DATA data set

	Configuring the CICS TCP/IP environment
	Building the configuration data set with EZACICD
	Configuration macro

	Customizing the configuration data set
	Configuration transaction (EZAC)

	UNIX Systems Services environment affects on IP CICS sockets

	Chapter 3. Configuring the CICS Domain Name System cache
	Function components
	VSAM cache file
	EZACICR macro
	EZACIC25 module

	How the DNS cache handles requests
	Using the DNS cache
	Step 1: Create the initialization module
	Step 2: Define the cache file to CICS
	Step 3: Execute EZACIC25
	HOSTENT structure

	Chapter 4. Starting and stopping CICS sockets
	Starting/stopping CICS TCP/IP automatically
	Starting/stopping CICS TCP/IP manually
	START function
	START CICS
	START LISTENER

	STOP function
	STOP CICS
	STOP LISTENER

	Starting/stopping CICS TCP/IP with program link

	Chapter 5. Writing your own Listener
	Prerequisites
	Using IBM's environmental support
	WLM registration and deregistration for sysplex connection optimization

	Chapter 6. Application programming guide
	Writing CICS TCP/IP applications
	1. The client-Listener-child-server application set
	Client call sequence
	Listener call sequence
	Child server call sequence

	2. Writing your own concurrent server
	Concurrent server call sequence
	Passing sockets

	3. The iterative server CICS TCP/IP application
	Iterative server use of sockets

	4. The client CICS TCP/IP application

	Socket addresses
	Address family (domain)
	IP addresses
	Ports
	Address structures
	For COBOL and assembler language programs
	For C programs

	MVS address spaces
	Network byte order

	GETCLIENTID, GIVESOCKET, and TAKESOCKET
	The Listener
	Listener input format
	Examples

	Listener output format
	Writing your own security/transaction link module for the Listener

	Data conversion routines

	Chapter 7. C language application programming
	C socket library
	C socket compilation
	Structures used in socket calls
	The ERRNO variable
	C socket calls
	accept()
	Format
	Parameters
	Return values

	bind()
	Format
	Parameters
	Return values

	close()
	Format
	Parameter
	Return values

	connect()
	Format
	Parameters
	Return values

	fcntl()
	Format
	Parameters
	Return values

	getclientid()
	Format
	Parameters
	Return values

	gethostbyaddr()
	Format
	Parameters
	Return values

	gethostbyname()
	Format
	Parameters
	Return values

	gethostid()
	Format
	Parameters
	Return values

	gethostname()
	Format
	Parameters
	Return values

	getpeername()
	Format
	Parameters
	Return values

	getsockname()
	Format
	Parameters
	Return values

	getsockopt(), setsockopt()
	Format
	Parameters
	Possible entries for optname
	Return values

	givesocket()
	Format
	Parameters
	Return Values

	initapi()
	Format
	Parameters
	Return values

	ioctl()
	Format
	Parameters
	Return values

	listen()
	Format
	Parameters
	Return values

	read()
	Format
	Parameters
	Return values

	recv()
	Format
	Parameters
	Return values

	recvfrom()
	Format
	Parameters
	Return values

	select()
	Defining which sockets to test

	send()
	Format
	Parameters
	Return values

	sendto()
	Format
	Parameters
	Return values

	setsockopt()
	shutdown()
	Format
	Parameters
	Return values

	socket()
	Format
	Parameters
	Return values

	takesocket()
	Format
	Parameters
	Return values

	write()
	Format
	Parameters
	Return values

	Chapter 8. Sockets extended application programming interface (API)
	Environmental restrictions and programming requirements
	CALL instruction application programming interface (API)
	Understanding COBOL, assembler, and PL/1 call formats
	COBOL language call format
	Assembler language call format
	PL/1 language call format

	Converting parameter descriptions
	Error messages and return codes
	Code CALL instructions
	ACCEPT
	Parameter values set by the application
	Parameter values returned to the application

	BIND
	Parameter values set by the application
	Parameter values returned to the application

	CLOSE
	Parameter values returned to the application
	Parameter values set by the application

	CONNECT
	Stream sockets
	UDP sockets
	Parameter values set by the application
	Parameter values returned to the application

	FCNTL
	Parameter values set by the application
	Parameter values returned to the application

	GETCLIENTID
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYADDR
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTID
	GETHOSTNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETPEERNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	INITAPI and INITAPIX
	Parameter values set by the application
	Parameter values returned to the application

	IOCTL
	Parameter values set by the application
	Parameter values returned to the application

	LISTEN
	Parameter values set by the application
	Parameter values returned to the application

	READ
	Parameter values set by the application
	Parameter values returned to the application

	READV
	Parameter values set by the application
	Parameter values returned to the application

	RECV
	Parameter values set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter values set by the application
	Parameter values returned to the application

	RECVMSG
	Parameter values set by the application
	Parameter values returned by the application

	SELECT
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SELECTEX
	Parameter values set by the application
	Parameter values returned by the application

	SEND
	Parameter values set by the application
	Parameter values returned to the application

	SENDMSG
	Parameter values set by the application
	Parameter values returned by the application

	SENDTO
	Parameter values set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter values set by the application
	Parameter values returned to the application

	SOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TERMAPI
	Parameter values set by the application

	WRITE
	Parameter values set by the application
	Parameter values returned to the application

	WRITEV
	Parameter values set by the application
	Parameters Returned by the Application

	Using data translation programs for socket call interface
	Data translation
	Bit string processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08

	Appendix A. Original COBOL application programming interface (EZACICAL)
	Using the EZACICAL or Sockets Extended API
	COBOL compilation
	The EZACICAL API
	COBOL
	PL/I
	Assembler language

	COBOL and assembler language socket calls
	ACCEPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	BIND
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	CLOSE
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	CONNECT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	FCNTL
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETCLIENTID
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETHOSTID
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETHOSTNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETPEERNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETSOCKNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	INITAPI
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	IOCTL
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	LISTEN
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	READ
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SELECT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SEND
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SENDTO
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	WRITE
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	Appendix B. Return codes
	Sockets Return Codes (ERRNOs)
	Sockets Extended ERRNOs

	Appendix C. GETSOCKOPT/SETSOCKOPT command values
	Appendix D. CICS sockets messages
	EZY1218—EZY1348

	Appendix E. Sample programs
	EZACICSC
	EZACICSS

	Appendix F. Related protocol specifications (RFCs)
	Appendix G. Information APARs
	Information APARs for IP manuals
	Information APARs for SNA manuals
	Other information APARs

	Appendix H. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	Communicating Your Comments to IBM
	Readers’ Comments — We'd Like to Hear from You

